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Abstract

Despite an abundance of semiparametric estimators of the transformation model, no proce-

dure has been proposed yet to test the hypothesis that the transformation function belongs to

a finite-dimensional parametric family against a nonparametric alternative. In this paper we

introduce a bootstrap test based on integrated squared distance between a nonparametric esti-

mator and a parametric null. As a special case, our procedure can be used to test the parametric

specification of the integrated baseline hazard in a semiparametric mixed proportional hazard

(MPH) model. We investigate the finite sample performance of our test in a Monte Carlo study.

Finally, we apply the proposed test to Kennan’s strike durations data.
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1 Introduction

Consider a transformation model of the form:

Λ0(Y ) = X ′β0 + U (1)

where Y is a scalar dependent variable, X is a vector of q nondegenerate explanatory variables, β0

is a vector of coefficients belonging to a compact set Θβ ⊂ Rq, Λ0(·) is an increasing function and U

is an unobserved error term with cumulative distribution function F that is independent of X. For

the model to be identified, the following normalizations are used: Λ0(y0) = 0 for some finite y0 and

β0,1 = 1 (where β0,1 denotes the first element of β0). Note that the model belongs to the class of

single index models, therefore β0 can be estimated
√
n-consistently using, for example, maximum

rank correlation estimator (Han (1987)) or semiparametric least squares (Ichimura (1993)). We

assume that such estimator is available throughout our analysis.

The main objective of this article is to provide a practically appealing test that would distinguish

between various parametric specifications of the transformation function. Our procedure can be used

to test a parametric form of the integrated baseline hazard function in duration models, to test the

log-linear specification in wage regressions or the form of the marginal utility (profit) function in

hedonic models (see Ekeland et al. (2004)). Among others, our procedure is relevant in experimental

studies of demand elasticities (e.g. Jessoe & Rapson (2014), Hainmueller et al. (2015), Karlan &

Zinman (2018)) where the dependent variable (sales, loan amounts, market shares etc.) is often

transformed using log(·) or log(· + 1). Our test can be used to verify if such transformation is

correctly specified and, thus, if these models provide correct elasticity estimates. Alternatively, if

independence between X and U is not guaranteed by the experimental design, just as in Neumeyer

et al. (2016), one can see our procedure as a general goodness-of-fit test for model (1).

Several nonparametric estimators have been proposed for the transformation function in model

(1) with and without censoring: Horowitz (1996) (HJ henceforth), Gørgens & Horowitz (1999),

Chen (2002) (CS henceforth), Ye & Duan (1997) and Klein & Sherman (2002). See also Linton

et al. (2008) for estimation of a generalized model with nonparametric regression function. Despite

such an abundance of semiparametric estimation techniques, the literature on testing parametric
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specification of the transformation model against an unrestricted one is small. A paper that is most

closely related is Neumeyer et al. (2016). They propose to test the specification of the transformation

by testing if a given parametric transformation is consistent with independence of X and U , so

essentially their test is based on the estimated distribution of residuals, Û . The disadvantage of

their test is the need to choose at least two bandwidths (see p. 939 in their paper) and additionally

a tuning sequence for implementation of their smoothed bootstrap procedure and there is little

practical guidance on how to choose these parameters in finite samples. As our procedure is based

on rank estimators and bootstrapping it avoids the need of choosing tuning parameters. Specification

testing in the quantile transformation model has been considered also by Mu & He (2007). There is

also a related literature on testing single index models, see e.g. Härdle & Mammen (1993), Horowitz

& Härdle (1994), Härdle et al. (1997), Neumeyer (2009).

Our test uses the nonparametric estimator of the transformation function developed by Chen

(2002) and compares it to the parametric specification using the L2 norm (or sup norm). We chose

to build our test on this estimator for three reasons. Firstly, the CS estimator has a convenient linear

asymptotic representation whereas no such representation is available for Klein & Sherman (2002)

and Ye & Duan (1997), which makes the analysis of the test based on the latter estimators more

complicated. Secondly, CS is much easier to compute than HJ since using the latter would involve

multiple computationally intensive numerical integrations. Finally, as shown in Chen (2002) CS

generally performs better than the other estimators in terms of root mean-square error, especially

in the tails of the data distribution.

In our model F is treated nonparametrically. As an alternative to our approach, one can assume

a parametric distribution for F , as in tests of Cox proportional hazard and mixed proportional

hazard models in Horowitz & Neumann (1992), McCall (1994), Lin et al. (2006). Alternatively, if

the data on Y is recorded on a finite grid, e.g. Y is unemployment duration and is recorded in weeks,

then one can estimate Λ0 at the points in the grid by maximum likelihood both with and without

imposing a parametric restriction on Λ0 and run a likelihood ratio test to verify if the parametric

model is valid.1 The disadvantage of these approaches is that misspecification of the parametric

form of F may lead to invalid inference about the specification of Λ0, whereas our approach will be
1See Meyer (1990) for estimation of an MPH model with nonparametric hazard, parametric distribution of U and

discrete observations on Y .
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robust to misspecifying F . Finally, our test can also be applied if F is restricted to a parametric

class provided that the nonparametric estimator of Λ0 satisfies the assumptions below.

The article is organized as follows. Section 2 discusses specification testing in the general trans-

formation model given in (1). In this model the transformation function is identified only up to scale

so inference boils down to checking if the shape of Λ0 is consistent with the parametric assumption.

Section 2.1 considers a special case of the mixed proportional hazard model. Thanks to additional

structure, in this model both the shape and the scale of the transformation function are identified.

We show that in order to test if the parametric specification of the integrated baseline hazard is

correct it is enough to use the estimator up to scale. This has two advantages relative to simply

comparing the estimated parametric and non-parametric integrated baseline hazards. Firstly, the

scale of the integrated baseline hazard, whether in parametric or nonparametric models, can be

estimated only at a rate slower than the standard n−1/2 rate (see Hahn (1994), Ishwaran (1996))

so by using estimates up to scale we still obtain a test that has power against alternatives that

are O(n−1/2) apart from the null hypothesis. Second, available estimators of the scale (see Honoré

(1990), Horowitz (1999)) are difficult to use in practice. For example, the estimator in the latter

paper requires a choice of multiple tuning sequences converging to zero at appropriate rates, which

is troublesome given lack of prescriptions for how to pick them in a finite sample.

Our test statistic converges to a functional of a Gaussian process and we suggest using bootstrap

to obtain the critical values. We show that bootstrap consistently estimates the asymptotic distri-

bution of our statistic. As a by-product of our analysis we prove that nonparametric bootstrap can

be used to obtain standard errors for the CS estimator. This is an important result by itself since

previous approaches based on numerical derivatives or kernel smoothing proved to be quite unstable

and hard to implement in practice. In Section 3 we investigate the finite sample performance of our

test using a Monte Carlo study. Section 4 provides an application to Kennan’s strike duration data.

Proofs are located in the Appendix and additional material is contained in the online supplement

available at Cambridge Journals Online (journals.cambridge.org/ect.
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2 General transformation model

We want to test:

H0 : Λ0(·) ∈ {Λ(·, γ); γ ∈ Θγ} over [y1, y2]

where Θγ is an open subset of a d-dimensional Euclidean space. One needs to restrict oneself

to a compact interval [y1, y2] because Λ0(y) may not be bounded on the whole real line.2 From

now on we will refer to the model with parametric Λ(·, γ) as a ‘parametric model’ in contrast to

a ‘nonparametric model’ in which Λ0 is not restricted to lie in a parametric class, although both

models leave the distribution of U unrestricted.

A natural way to construct a test is to take the L2 (or sup) distance between one of the estimators

Λn(·) and the parametric estimator, e.g. the estimator of Box-Cox regression model proposed by

Foster et al. (2001). However, as mentioned in the Introduction, the transformation function is

only identified up to scale and location normalizations. We have two cases. Firstly, the same

normalization may be imposed on both nonparametric and parametric models, i.e. Λ0(y0) = Λ(y0, γ)

for some y0 ∈ R, and β1 = 1. Secondly, often a parametric model for the transformation imposes a

scale normalization by itself so we cannot restrict β1 = 1 (for example, if the parametric specification

has a log-linear form: log Y = X ′β + U). Therefore, we have to normalize the nonparametric

estimator so that the two transformation functions are comparable. This can be done by multiplying

the nonparametric estimator by the estimator of the scale from the parametric model.3

Let β̂ denote an estimator of the coefficient vector β in the parametric model and let β̂1 be its

first element. Note that β̂1Λn(y) is equal to the estimator of the transformation function when the

normalization β0,1 = β̂1 is imposed instead of β0,1 = 1. Thus, our test statistic is given by:

Tn = n

∫ y2

y1

[(anΛn(y)− Λ(y, γ̂))w(y)]2 dy. (2)

2One could expand the support of Λ with the sample size and as a result obtain a test over the whole support R.
We leave this extension for further research.

3Throughout the article we will use hats to denote the estimators obtained using the parametric model and
subscript n to denote estimators corresponding to the nonparametric model.

5



where γ̂ is an estimator of γ, an = D + (1−D)β̂1 and

D =


1 if both transformations are normalized at the same point

0 otherwise

The weight function w(y) may be used to redirect the power of the test over y. For example, an

application may dictate that some region of y’s is of particular interest.

In principle, instead of using a Cramér-von-Mises type test, a Kolmogorov-Smirnov type test

can be used. The latter test would have more power against sharp-peaked alternatives. As our

proofs involve showing uniform convergence of the integrand in (2) it is straightforward to extend

our results to the Kolmogorov-Smirnov test.4

Frequently, especially in the context of duration models, the observations on Yi are right-

censored. Let Ci denote a random censoring threshold with cumulative distribution function G0 and

survival function Ḡ0, let Ỹi denote a latent (not censored) value of the dependent variable generated

from (1) and let Yi be a censored observation on Ỹi, i.e. Yi = min{Ỹi, Ci}. Additionally, define a

censoring indicator δi = 1{Ỹi ≤ Ci}.

From now on, we will focus on the case in which Y ’s are censored. The case without censoring

can be seen as a special case with Ci = ∞ for all i (i.e. Ḡ0(y) = 1 for all y in [y1, y2]) so all the

arguments below will apply to this special case.

Define the Euclidean class of functions as in Pakes & Pollard (1989) and let L2(Y) denote a

space of square integrable functions on Y. We make the following assumptions:

Assumption 1. (DGP) {Xi, Yi, δi : i = 1, . . . , n} is a random sample, U is independent of X, C

is independent of (X,U) and Ḡ0 is bounded away from zero on [y1, y2].

Assumption 2. (Asymptotic linearity)

(a) There is a function J : [y1, y2]×Rq×{0, 1}× [y1, y2]×Θβ → R such that E[J(Y,X, δ; y, β0)] = 0,

E[J(Y,X, δ; y, β0)J(Y,X, δ; y′, β0)] is finite for every y, y′ ∈ [y1, y2], J(Y,X, δ; ·, β0) ∈ L2([y1, y2])

4See Online Appendix B.1 for Monte Carlo simulations with the KS test.
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and, as n→∞:

√
n(Λn(y)− Λ0(y)) =

1√
n

n∑
i=1

J(Yi, Xi, δi; y, β0) + op(1)

uniformly over y ∈ [y1, y2]. Moreover, the class of functions J = {J(·, ·, ·; y, β0), y ∈ [y1, y2]} is

Euclidean.

(b) Let γ be a probability limit of γ̂. There exists a vector-valued function Ωγ(Yi, Xi, δi; γ, β) with

mean zero and finite covariance matrix such that, as n→∞:

√
n(γ̂ − γ) =

1√
n

n∑
i=1

Ωγ(Yi, Xi, δi; γ, β) + op(1).

(c) Λ(y, γ) is twice differentiable in γ and the derivatives are bounded uniformly over y ∈ [y1, y2].

(d) Let β1 be a probability limit of β̂1. There exists a function Ω1(Yi, Xi, δi; γ, β) with mean zero

and finite variance such that, as n→∞:

√
n(β̂1 − β1) =

1√
n

n∑
i=1

Ω1(Yi, Xi, δi; γ, β) + op(1).

Assumption 3. (Weight function) The weight function w(y) satisfies:
∫ y2

y1
w(y)2dy = 1.

Assumption 2(a) is satisfied by the CS and by the HJ estimator.5 This assumption implies

that
√
n(Λn(y)− Λ0(y)) converges to a mean zero Gaussian process. Assumptions 2(b),(c) are not

relevant if Λ(y, γ) does not depend on γ as in our leading example of testing a log-linear model versus

a nonparametric alternative, i.e. Λ(y, γ) = log(y). Assumption 2(b) is satisfied by the estimator

proposed in Foster et al. (2001)6 and the estimators for Box-Cox and Bickel-Doksum parameters

suggested in Han (1987) and analyzed in Asparouhova et al. (2002) (see Online Appendix D).

Assumption 2(c) is satisfied by the Box-Cox transformation (with y1 > 0) and most hedonic pricing

models if the utility (profit) function is sufficiently smooth (e.g. Cobb-Douglas). The asymptotic
5Klein & Sherman (2002) only show point-wise convergence of their estimator to a normal variable. They do not

provide a uniform linear representation as in Assumption 2(a). Also the estimator developed by Ye & Duan (1997)
does not have a linear representation.

6Foster et al. (2001) include an intercept in their model and set E(U) = 0. This is in line with our model in (1)
as we do not restrict the mean of U .
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linear representation in Assumption 2(d) is clearly available for the OLS estimator in the loglinear

model but also for the estimator developed by Foster et al. (2001) for the Box-Cox model.

Example 1. (log-linear model) We test if a wage regression has a log-linear form. For simplicity

assume that there is only one regressor and no censoring. We estimate the model by ordinary least

squares. In this case we have Λ(y, γ) = log(y), ∂Λ(y,γ)
∂γ = 0 and Ω1(Yi, Xi; γ, β) = (Xi − X̄)(log Yi −

βXi)/V ar(Xi).

Define:

Bn(y) =
1√
n

n∑
i=1

[(D + (1−D)β1)J(Yi, Xi; y, β0)−∂Λ(y, γ)

∂γ

′
Ωγ(Yi, Xi; γ, β)

+ (1−D)Λ(y, γ)Ω1(Yi, Xi; γ, β)]w(y). (3)

The following theorem establishes the asymptotic approximation to the distribution of the test

statistics.

Theorem 1. Under H0 and Assumptions 1-3:

Tn →d

∫ y2

y1

B2(y)dy (4)

where B is a mean zero Gaussian process with covariance function R(y, y′) = E[Bn(y)Bn(y′)].

Alternatively, we can write:

Tn →d
∞∑
j=1

ωjχ
2
j1, (5)

where χ2
j1’s are independent chi-square random variables with one degree of freedom and ωj’s are

eigenvalues of the linear integral operator:

(Rg)(y) =

∫ y2

y1

R(y, z)g(z)dz; g(·) ∈ L2([y1, y2]). (6)

The alternative formulation in (5) follows from principal component decomposition of B(y), just

as in Durbin & Knott (1972), and will be useful for analyzing local power of our test.
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We can obtain the critical value for our test by simulating the process B and calculating the

integral in (4).7 However, this would require estimating the covariance function R which both for CS

and HJ estimators involves kernel smoothing. Since there are no procedures to choose a bandwidth

for these estimators in the finite sample and, as evidenced by our simulation studies (available upon

request), the results of the test are very sensitive to this choice, we do not pursue this approach.

Instead, we suggest using bootstrap critical value.

2.1 MPH duration model

Before we turn to the bootstrap procedure, we briefly discuss how our test can be used to test a

parametric specification of the (integrated) baseline hazard in duration models. A duration model

can be seen as a special case of the transformation model. We consider the single-spell mixed

proportional hazard (MPH) model:

α log Λ̃(Y ) = X ′β + V − ξ (7)

where Λ̃(Y )α is the integrated baseline hazard, ξ has the standard Gumbel distribution and (ξ, V,X)

are mutually independent. For simplicity, there is no censoring. We intentionally factored out the

scale of the log of integrated hazard, α, to facilitate discussion below. The difference between this

model and the general transformation model discussed before is that here β and α are separately

identified and we do not need the normalization β1 = 1.

Now observe that, if Λ̃ is known, equation (7) pins down the scale α because the scale of ξ is

fixed (and ξ is independent of X and V ). In other words, if there are two MPH models:

α(1) log Λ̃(1)(Y ) = Xβ(1) + V (1) − ξ

α(2) log Λ̃(2)(Y ) = Xβ(2) + V (2) − ξ

7As an alternative, one can use the characterization in (5) and employ the simulation procedure in Horowitz
(2006) and Blundell & Horowitz (2007). This would involve truncating the sum in (5) and estimating the remaining
eigenvalues ωj . This is straightforward in the setting analyzed by Horowitz (2006) and Blundell & Horowitz (2007)
because the Fourier representation of the covariance kernel can be calculated analytically without numerical integra-
tion. This is not the case here since the covariance function includes an at least three dimensional non-separable
function J(·, ·; ·, β0), which entails the need to perform a triple numerical integration in order to obtain the Fourier
coefficients. This makes this method unattractive in our setting.
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with Λ̃(1) = Λ̃(2), then they can generate the same population distribution of Y given X only if

α(1) = α(2) (excluding a knife-edge case when V (1)/α(1) and V (2)/α(2) have the same distribution

as −ξ). As a result, if we want to test if the integrated baseline hazard α log Λ̃(·) belongs to some

parametric class, it is enough to test that the estimate up to scale, log Λ̃(·), belongs to a conjectured

parametric family. Therefore, the following procedure can be used:

1. Estimate the transformation model in (1) imposing the necessary normalizations.

2. Estimate the null parametric transformation Λ(y, γ) = log Λ̃(y, γ) with (this would correspond

to D = 0 above) or without (D = 1) imposing the normalization β1 = 1, for example by using

GMM (see Horowitz (2009), Ch. 6.1) or Foster et al. (2001).

3. Run our bootstrap test (see next section for details). If the test statistic is greater than the

critical value, conclude that the integrated baseline hazard is misspecified.

This is convenient since estimators of α do not converge at the n−1/2 rate either in the parametric

or nonparametric model. For the Weibull MPH model Honoré (1990) shows that under the assump-

tion E[e−V ] <∞ his estimator converges at a rate that can be made arbitrarily close to n−1/3. As

shown by Ishwaran (1996), the highest rate at which an estimator of α converges to the true value

under the assumption E[e−V ] < ∞ is n−1/3, and n−2/5 under the assumption E[e−3V ] < ∞. On

the other hand, estimators of log Λ̃(·) converge at the usual n−1/2 rate. Thus, by avoiding the need

to estimate the scale α in our test we sustain this fast rate of convergence.

Example 2. (Weibull MPH model) We test if the integrated baseline hazard has a Weibull shape,

i.e. if log Λ̃(y) = log(y). Now the MPH model becomes:

log(Y ) = X ′
β

α
+
V − ξ
α

and β̃1 = β1/α can be estimated
√
n-consistently by OLS. We can use ˆ̃

β1 as the scaling factor.

Since the transformation function does not depend on unknown parameters, the second term in the

expression for Bn (equation (3)) vanishes.
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2.2 Bootstrap critical value

The theory developed so far applies both to the HJ and CS estimators. Nevertheless, CS is preferred

from the computational point of view. Using HJ to compute the test statistic involves double

numerical integration to obtain Λn on top of the integration involved in computing the L2 distance.

Doing that repetitively to obtain the bootstrap critical value would entail a very large computational

cost. It is much easier to bootstrap the CS estimator. Thus, from now on we will assume that Λn

is the CS estimator. In the case of censored observations this estimator is defined as:

Λn(y) = arg max
Λ

1

n(n− 1)

∑
i 6=j

(
diy

Ḡn(y)
− djy0

Ḡn(y0)

)
1{Zi − Zj ≥ Λ} (8)

where Ḡn(y) is the Kaplan-Meier estimator of the survival function of the censoring threshold C

and diy = 1{Yi ≥ y}, djy0 = 1{Yj ≥ y0} and Zi = X ′ibn.

Let w1 = (x1, y1) and w2 = (x2, y2). Define:

r(w1, w2, y,G,Λ, b) =

(
1{y1 ≥ y}
Ḡ(y)

− 1{y2 ≥ y0}
Ḡ(y0)

)
(1{x1b− x2b ≥ Λ} − 1{x1b− x2b ≥ Λ0})

and:

τ(w, y,Λ) = E[r(w,W, y,G0,Λ, β0) + r(W,w, y,G0,Λ, β0)]

for W = (X,Y ). Let:

V (y) = E

[
−∂

2τ(W, y,Λ)

∂Λ2

∣∣∣∣
Λ=Λ0

]
.

Finally, let X1 be the first component of X and X−1 denote the remaining (q − 1) components.

Our bootstrap procedure will be valid under assumptions similar to those introduced in Chen

(2002) and Jochmans (2012):

Assumption 4. (Chen (2002))

(a) The normalization β1 = 1 is imposed on the nonparametric estimator Λn.

(b) The distribution of X1 conditional on X−1 = x−1 is absolutely continuous with respect to the
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Lebesgue measure.

(c) The support of X is not contained in any proper linear subspace of Rq.

(d) Λ0(·) is strictly increasing, Λ0(y0) = 0, [Λ0(y1−ε),Λ0(y2 +ε)] ⊂ ΘΛ for a small positive number

ε, where ΘΛ is a compact interval.

(e) The conditional density of X1 given X−1 = x−1 and the density of U are bounded and twice

continuously differentiable, the derivatives are uniformly bounded and X−1 has finite third-order

moments.

(f) V (y) is positive for each y ∈ [y1, y2] and uniformly bounded away from zero.

(g) The first step estimator of β0 from the nonparametric model, bn, has the following asymptotic

representation:8

√
n(bn − β0) =

1√
n

n∑
i=1

ΩNP (Yi, Xi, δi;β0) + op(1).

where ΩNP is a mean zero vector valued function with finite variance-covariance matrix.

We will employ the following bootstrap procedure to obtain a critical value for our test:

1. Draw a random sample {(Y ∗i , X∗i , δ∗i ) : i = 1, . . . , n} with replacement from {(Yi, Xi, δi) : i =

1, . . . , n} or use a parametric bootstrap:

• Estimate (β̂, γ̂) using {(Yi, Xi) : i = 1, . . . , n}.

• Generate Ûi = Λ(Yi, γ̂)−X ′iβ̂.

• Draw a random sample {U∗i : i = 1, . . . , n} with replacement from {Ûi : i = 1, . . . , n}

and calculate Y ∗i = Λ−1(X ′iβ̂ + U∗i , γ̂).

2. Using the bootstrap sample calculate (β̂1, γ̂) from the parametric model and (Λn, bn) from the

nonparametric model. Let the resulting estimates be denoted by (β̂∗1 , γ̂
∗) and (Λ∗n, b

∗
n).

8Recall that the estimator obtained from the model with parametric Λ is denoted by β̂. We can have β̂1 6= 1
whereas bn1 = 1 by assumption.
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3. Calculate the bootstrap statistic:

T ∗n = n

∫ y2

y1

[(a∗nΛ∗n(y)− anΛn(y)− (Λ(y, γ̂∗)− Λ(y, γ̂)))w(y)]2 dy.

if nonparametric bootstrap has been used, or:

T ∗n = n

∫ y2

y1

[(a∗nΛ∗n(y)− Λ(y, γ̂∗))w(y)]2 dy.

for parametric bootstrap, where a∗n = D + (1−D)β̂∗1 .

4. Obtain the empirical distribution of T ∗n by repeating steps 1-3 many times. Calculate the 1−κ

quantile of this empirical distribution. Denote it by c∗κ.

If data are not censored, then we recommend to use parametric bootstrap as it usually leads

to better performance in a finite sample. On the other hand, applying parametric bootstrap is

complicated with censored data so we prefer nonparametric bootstrap in this case. Finally, note

that the statistic corresponding to the parametric bootstrap does not require recentering as the

parametric bootstrap imposes the null hypothesis contrary to nonparametric resampling.

On top of the assumptions above we will need an asymptotic linear approximation in the boot-

strap sample:9

Assumption 5. (Bootstrap asymptotic linearity) We have:

E

∣∣∣∣∣γ̂∗ − γ − 1

n

n∑
i=1

Ωγ(Y ∗i , X
∗
i , δ
∗
i ; γ, β)

∣∣∣∣∣ = o(n−1/2) (9)

E

∣∣∣∣∣β̂∗1 − β1 −
1

n

n∑
i=1

Ω1(Y ∗i , X
∗
i , δ
∗
i ; γ, β)

∣∣∣∣∣ = o(n−1/2) (10)

E

∣∣∣∣∣b∗n − β0 −
1

n

n∑
i=1

ΩNP (Y ∗i , X
∗
i , δ
∗
i ;β0)

∣∣∣∣∣ = o(n−1/2) (11)

where Ωγ ,Ω1,Ω
NP have zero mean and finite variance-covariance matrix.

In the leading case when the parametric model in the null hypothesis does not depend on any

free parameters (e.g. testing the Weibull model in duration analysis), condition (9) is redundant. In
9The meaning of the expectation operator here is explained in the Appendix where we formally define the proba-

bility space for handling joint sample and bootstrap randomness.
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the next section we show that this condition is satisfied for the estimator in Chen (2012). Condition

(10) will be satisfied for the OLS estimator. An asymptotic bootstrap linear representation for the

rank estimators bn introduced in Han (1987), Cavanagh & Sherman (1998) and Abrevaya (2003)

follows from Subbotin (2007).

The following theorem states that the bootstrap critical value gives the correct approximation

to the asymptotic critical value:

Theorem 2. Under H0 and Assumptions 1, 2(b)-(d),3-5:

lim
n→∞

P (Tn ≤ c∗κ) = 1− κ.

The proof of this theorem is similar to the results in Subbotin (2007) who proves bootstrap

validity for rank estimators. A complication in the proof compared to his work comes from the fact

that the rank objective function in (8) contains estimators bn and Ḡn, which will contribute to the

asymptotic distribution of Λn and Λ∗n. Our proof also works under slightly weaker conditions than

his. The argument leading to Theorem 2 implies also a following useful corollary:

Corollary 1. Let P ∗n denote conditional probability given the sample {Xi, Yi, δi : i = 1, . . . , n}.

If Assumptions 1, 2(a), 4 and condition (11) in Assumption 5 hold, then nonparametric bootstrap

approximates consistently the asymptotic distribution of the CS estimator, i.e.

sup
t∈ΘΛ

sup
y∈[y1,y2]

|P ∗n(Λ∗n(y) ≤ t)− P (HΛ(y) ≤ t)| = op(1)

where HΛ is the Gaussian process defined in Theorem 2 in Chen (2002).

This result is important because it provides an operational method for obtaining standard errors

for the CS estimator. Previous approaches based on numerical derivatives or kernel smoothing relied

on arbitrary choices of the approximation step or bandwidth with the results being very sensitive to

inappropriate choices of these tuning parameters. On the downside, bootstrapping the CS estimator

is computationally costly, but not prohibitively so as shown by our MC simulations and application.
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2.3 Bootstrap asymptotic linear approximation for censored semiparametric

Box-Cox model

We will verify that Assumption 5 holds for the estimators of γ and β in the censored Box-Cox

transformation model proposed by Chen (2012) (we analyze a model without censoring in Online

Appendix E). We observe Yi = max{Ỹi, c} where c is a known censoring constant.10 The Box-Cox

transformation is given by:11

Λ(y, g) =


yg−1
g if g 6= 0

log y otherwise

Chen (2012) suggests to estimate (γ, β) using a two-step estimator:

1. First, for any candidate g estimate a curve β̂(g) by minimizing:

Sn(g, b) =
1

n(n− 1)

∑
i 6=j

s(Λ(Yi, g)− Λ(c, g),Λ(Yj , g)− Λ(c, g), (Xi −Xj)
′b)

with respect to b, where:

s(y1, y2,∆) =


y2

1 − 2(y2 + ∆)y1 if ∆ ≤ −y2

(y1 − y2 −∆)2 if −y2 < ∆ < y1

y2
2 + 2(∆− y1)y2 if y1 ≤ ∆

2. Then estimate γ by maximizing:

Rn(g, β̂(g)) =
1

n(n− 1)

∑
i 6=j

∫ ∞
c

∫ ∞
c

(1{Yi < y1} − 1{Yj < y2})

× 1{Λ(y1, g)− Λ(y2, g) ≥ (Xi −Xj)
′β̂(g)}dΨ1(y1)dΨ2(y2)

where Ψ1(y),Ψ2(y) are differentiable, strictly increasing, deterministic and bounded weight
10We follow directly the convention in Chen (2012) and consider censoring from below here. The estimator can

be easily modified to deal with censoring from above and our results apply in this case with only straightforward
modifications in our assumptions.

11As mentioned in Chen (2012) his estimator can also be applied to generalizations of the Box-Cox transformation
in Bickel & Doksum (1981).
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functions. Let γ̂ denote this estimator. Estimate β by β̂(γ̂).

Define β(g) to be a minimizer of E[Sn(g, β)] for given g. Let θ = (g, b) ∈ Θ, θ0 = (γ, β) and θ∗

be the corresponding estimators calculated on the bootstrap sample. Now with wl = (xl, yl), l = 1, 2

and y = (y1, y2) define:

hBCθ,y (w1, w2) = (1{y1 < y1} − 1{y2 < y2})1{Λ(y1, g)− Λ(y2, g) ≥ (x1 − x2)′b}

− (1{y1 < y1} − 1{y2 < y2})1{Λ(y1, γ)− Λ(y2, γ) ≥ (x1 − x2)′β}

and τBC(w, y, θ) = E
[
hBCθ,y (w,W ) + hBCθ,y (W,w)

]
, where the expectation is taken with respect to

W = (X,Y ). Then define:

VBC = E

[∫ ∞
c

∫ ∞
c

∂2τBC(W, y, θ0)dΨ1(y1)dΨ2(y2)

]

with ∂2τBC(w, y, θ) denoting the matrix of second derivatives of τBC(w, y, θ) with respect to θ.

Theorem 3. Let Assumptions 4(b),(c),(e) hold. Furthermore, assume:

(a) Ψ1(y) and Ψ2(y) are supported on a compact interval Y ⊂ [c,∞), Θ = Θγ ×Θβ is compact and

(γ, β) is an interior point of Θ,

(b) P (Yi > c|Xi) > 0 for almost every Xi,

(c) There exists a small neighborhood of γ, Nγ, such that:

E

[
sup
g∈Nγ

∣∣∣∣∂2Λ(Y, g)

∂g2

∣∣∣∣
]2

<∞ and E

[
sup
g∈Nγ

∣∣∣∣∂2φ1(X,Y, g)

∂g2

∣∣∣∣
]2

<∞

where φ1 is defined in Chen (2012),

(d) VBC is a negative definite matrix,

then Assumption 5 is satisfied for the estimators of (γ, β1) introduced in Chen (2012).

The proof follows similar lines to the proof of Theorem 2 and is given in the Appendix. Condi-

tions of the theorem imply that Assumptions 1-4 in Chen (2012) hold. For example, our Assumption

4(e) implies his Assumption 4(b).
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2.4 Consistency and behaviour under local alternatives

We conclude this section with an analysis of power and local behaviour of our bootstrap test. Assume

that the null hypothesis is false, i.e. there is no γ ∈ Θγ such that Λ0(·) = Λ(·, γ) a.e. Define:

q(y) = Λ0(y)− Λ(y, γ)

where γ is a probability limit of γ̂. The following theorem establishes consistency of the test under

a fixed alternative:12

Theorem 4. Let Assumptions 1, 2(b)-(d),3-5 hold. Additionally, let H0 be false and
∫ y2

y1
[q(y)w(y)]2dy >

0. Then, for κ ∈ (0, 1) we have:

lim
n→∞

P (Tn > c∗κ) = 1.

Here and in the next theorem the values γ and β1 (from the parametric model) described

in Assumptions 2(b),(d) are interpreted as pseudo true values because the parametric model is

misspecified.

Now consider local alternatives of the form:

Λ(y) = Λ(y, γ) +
1√
n

Λloc(y), (12)

where Λ(y, γ) = Λ0(y) and Λloc(·) ∈ L2([y1, y2]). Let the sequence of functions {ψj}∞j=0 form an

orthonormal basis of L2([y1, y2]). The following theorem provides local asymptotics:

Theorem 5. Let Assumptions 1, 2(b)-(d),3-5 hold. Under the sequence of local alternatives de-

scribed in (12):

Tn →d
∞∑
j=1

ωjχ
2
j1

(
ϑ2
j

ωj

)
,

where ϑj =
∫ y2

y1
Λloc(y)w(y)ψj(y)dy and χ2

j1

(
ϑ2
j

ωj

)
denotes a noncentral chi-square random variable

with 1 degree of freedom and noncentrality parameter
ϑ2
j

ωj
.

12See Online Appendix for proofs of the results in this Section.
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Theorem 5 implies that the test has local power against local alternatives that are n−1/2 away

from the null hypothesis. In principle, different choices of the nonparametric estimator Λn will yield

different eigenvalues ωj and thus different local power. However, it is difficult to compare them

theoretically since the kernels of the operator R in (6) for different estimators (HJ, CS and Ye &

Duan (1997)) are complicated functions of y. The eigenvalues are usually computed as solutions

to differential equations that involve derivatives of the kernels. Hence, the general expressions are

hard to get.

3 Monte Carlo simulations

We investigate finite sample performance of the aforementioned testing procedures using several

simple designs. We consider both the case when the model in the null hypothesis does not (linear

transformation) and does (Box-Cox transformation) depend on the unknown parameter.

3.1 Linear transformation

The data is generated from the following three models:

Y = X + U (Null)

log(Y + 2.12)− log(2.12) = X + U (Alternative 1)

1

13
sinh(2Y ) = X + U (Alternative 2)

where X is drawn from the standard normal distribution and U is drawn either from the standard

normal, the standard Gumbel or from the logistic distribution. We shifted the logarithmic function

by 2.12 in order to minimize L2 distance of the logarithmic transformation in Alternative 1 to the

linear function in the null. We set [y1, y2] = [−2, 2].13 The transformation functions under the null

and under the alternatives are normalized at the same point y0 = 0 (though, we do not use this

information for running our test i.e. D = 0). This design is similar to the one used in Horowitz

(1996). Figure 1 (left panel) shows the shape of the transformation functions.

The model with logistic U can be interpreted as an MPH model with V having the standard
13Online Appendix B.2 contains results with [y1, y2] = [−3, 3] and [y1, y2] = [−4, 4] in a model with no censoring.

The results are very similar to the ones in Table 1.
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Figure 1: Monte Carlo designs: linear (left panel) and Box-Cox (right panel) models
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Gumbel distribution. Under this interpretation the null model assumes an increasing baseline hazard

λ(y) = ey, Alternative 1 implies that this hazard is constant and in Alternative 2 the baseline hazard

equals 2
13 cosh(2y)e

1
13

sinh(2y) and is non-monotonic.

We consider both the case when Y is fully observed as well as the case when Y is randomly

censored. In the former case we use parametric bootstrap. In the latter case the censoring threshold

C is drawn from N(µ, 1) and µ is chosen such that the probability of being censored is roughly equal

to 20%. The coefficient vector β is either estimated by OLS or RCLAD estimator of Honoré et al.

(2002).

We run 2000 Monte Carlo replications. We calculate the integral in the test statistic using

Halton sequences of size 100. Optimization needed to compute the nonparametric estimator Λn

was performed using the Nelder-Mead simplex algorithm. The starting values for the optimization

were taken from the null model whether the data was generated by this model or the alternative.

The number of bootstrap replications used to calculate the critical value is 500. One Monte Carlo

replication in the case with no censoring takes 2.1, 3.2 and 6.2 minutes on average for n = 100, 500

and 1000 respectively. For the censored case the respective computing times are 2.1, 8.3 and 12.6

minutes.

The results for the model without censoring (Table 1) show that our bootstrap test performs

very well when n ≥ 500 with some underrejection for smaller sample size. The test is consistent

against both alternatives. Already with a sample size of 500 the test rejects the log-linear and
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hyperbolic sin model almost with certainty.

Table 1: Rejection probabilities, no censoring

U ∼ Normal U ∼ Gumbel U ∼ Logistic
n = 100

10% 5% 1% 10% 5% 1% 10% 5% 1%
Null 7.6 3.7 0.6 6.1 3.6 1.2 5.9 2.3 0.2

Alternative 1 99.8 99.6 98.7 98.7 97.0 89.6 90.5 88.6 82.9
Alternative 2 98.7 94.4 69.0 95.8 87.2 44.3 71.5 45.6 10.6

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 10.6 5.7 1.0 9.0 4.4 1.0 8.5 4.3 0.7
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 96.5 96.1 95.7
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 99.8 97.3 74.7

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 9.7 4.5 0.9 10.4 5.0 1.1 9.4 4.9 1.1
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 97.4 97.2 96.4
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1

Note: 2000 Monte Carlo simulations, 500 bootstrap replications (parametric bootstrap).

As we can see from Table 2 the finite sample performance of our bootstrap test deteriorates when

the dependent variable Y is censored. This is expected because compared to the model with no

censoring the rank estimation in the censored model involves additional estimation of the survival

function of the censoring threshold C. For example, with a sample of size 100 and censoring rate of

20% we have only about 20 censored observations to estimate this function so the resulting estimator

will be quite imprecise. This manifests itself with low power of the test (especially for Alternative

2). However, the power increases fast with the sample size and already with n = 500 we reject

the alternative models with probability close to one. When it comes to controlling size, even for

n = 1000 the null rejection probabilities are significantly below the nominal levels which suggests

that our test may be conservative in small to medium sized samples. A similar finding was obtained

by Subbotin (2007) in his Monte Carlo simulations for the maximum rank correlation estimator of

β coefficients in the transformation model.

Overall, our bootstrap test performs reasonably well in small to moderate samples with a ten-

dency to be on the conservative side.
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Table 2: Rejection probabilities, random censoring

U ∼ Normal U ∼ Gumbel U ∼ Logistic
n = 100

Null 5.2 3.1 0.9 4.3 2.3 0.5 1.9 0.4 0.0
Alternative 1 57.7 36.0 8.5 56.5 35.6 8.8 27.8 12.8 1.5
Alternative 2 26.9 11.5 1.2 16.8 7.7 0.9 7.7 2.6 0.6

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 3.4 0.9 0.0 4.4 1.5 0.4 3.3 1.1 0.0
Alternative 1 100.0 99.9 98.7 99.6 97.9 89.1 98.6 96.1 81.0
Alternative 2 99.9 99.9 99.3 99.9 99.7 97.1 98.9 96.2 82.1

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 5.8 2.5 0.4 5.6 2.2 0.1 5.3 2.1 0.4
Alternative 1 100.0 100.0 99.9 99.9 99.7 98.6 99.9 99.8 97.9
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1

Note: 2000 Monte Carlo simulations, 500 bootstrap replications (nonparametric bootstrap).

3.2 Box-Cox transformation

Due to the high computational burden of implementing the test for the censored Box-Cox model

(note that the estimator in Chen (2012) is a two-step estimator and the second step requires min-

imizing a second order U statistic), we only run a small scale simulation study. We generate data

from the log-linear and hyperbolic sin model:

log Ỹ = X + U (Null)

1

13
sinh(2 log(Ỹ )) = X + U (Alternative)

where both X and U are drawn from the standard normal distribution (see right panel of Figure

1). We censor Yi = min{Ỹi, c} where c is chosen to obtain around 20% rate of censoring.

Following the recommendation in Chen (2012) we use uniform weights for Ψ1 and Ψ2. In order

to estimate the Box-Cox parameter in the second step of his procedure we use grid search. Note that

both functions are normalized at y0 = 1. Due to censoring we apply the nonparametric bootstrap

procedure.

The results in Table 3 confirm the conclusions from the previous section. Under censoring the

nonparametric bootstrap test is conservative in small samples, though rejection probabilities under
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Table 3: Censored Box-Cox model, rejection probabilities

U ∼ Normal U ∼ Gumbel U ∼ Logistic
n = 100

10% 5% 1% 10% 5% 1% 10% 5% 1%
Null 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0

Alternative 8.8 2.2 0.0 3.8 0.4 0.0 9.3 1.4 0.0
n = 200

10% 5% 1% 10% 5% 1% 10% 5% 1%
Null 0.6 0.4 0.0 0.2 0.0 0.0 0.5 0.2 0.0

Alternative 97.8 92.7 53.6 90.5 72.0 21.4 95.4 85.6 32.6
n = 300

10% 5% 1% 10% 5% 1% 10% 5% 1%
Null 2.3 0.4 0.1 1.1 0.4 0.0 2.8 1.0 0.1

Alternative 99.9 99.6 93.5 98.9 97.0 75.4 99.9 99.3 89.6

Note: 1000 Monte Carlo simulations, 500 bootstrap replications (nonparametric bootstrap).

the null get closer to nominal values as the sample size increases. Moreover, the results suggest that

the test is consistent.

4 Application to Kennan’s strike duration data

In this section we apply our testing procedure in the study of the relation between strike durations

and the level of economic activity. Kennan (1985) was the first to empirically investigate this relation

using data on strikes involving 1000 or more workers in US manufacturing during 1968-1976. He

measured the level of economic activity by an index of industrial production in manufacturing

(INDP). Table 4 presents summary statistics.

Table 4: Summary statistics, n = 566

Mean Std. Dev. Min Max
strike duration (in days) 43.624 44.666 1 235

INDP .00604 .04991 -.13996 .08554

Horowitz (2009) re-investigates this question using three models that differ with the parametric

assumptions on the transformation function and the distribution F : proportional hazards model

(nonparametric Λ, parametric F ), loglinear model (parametric Λ, nonparametric F ), nonparametric

model (both Λ and F nonparametric).

The results of estimating these three models are summarized in Figure 2, which shows estimates
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Figure 2: Results of estimating three models of strike duration

 

Index of Industrial Production 
-3 -2 -1 0 1 2 3 

0 

25 

50 

75 

100 

125 

Loglinear Model 

Proportional Hazards 

Nonparametric T and F 

Medians 

1st Quartiles 

3rd Quartiles 

Duration 

Note: This figure comes from Horowitz (2009), Section 6.5. Higher values of the index correspond to lower levels of
economic activity.

of the conditional first quartile, median, and third quartile of the distribution of strike durations

given INDP obtained from each of these models.

For our purpose, it is interesting to compare the loglinear and nonparametric model. These two

models differ only with respect to the assumptions on the transformation function, which is exactly

the setting that we analyzed above. We notice that the loglinear model and the nonparametric

model deliver quite similar predictions for the median strike duration but the results diverge for

the first and the third quartile, especially for high values of INDP (i.e. periods of low economic

activity). In particular, nonparametric estimates suggest that the distribution of strike durations is

more highly skewed to the right than the distribution resulting from the estimation of the loglinear

model.

The differences in the estimated parametric and nonparametric transformations are also evident

from Figure 3. In particular, the nonparametric curve agrees with log specification around the center

of the data (median duration is equal to 28) but diverges further from the median. It is interesting

to formally verify if these discrepancies are due merely to the imprecision of the nonparametric

estimate in the tails of the data or they signify misspecification of the loglinear model.

For the purpose of our test we set y1 = 2 and y2 = 125 (around 90% of observations on strike
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Figure 3: Nonparametric and parametric estimates of the transformation function

Note: Solid line corresponds to the log transformation and dashed line to the nonparametric estimator obtained using
the MRC estimator in Chen (2002). Bar plot (right axis) shows the histogram of strike durations.

durations fall in this range) and use Halton sequence of length 100 to evaluate the integral in (2).

We run 500 bootstrap replications to obtain the critical value. The test statistic is equal to 43.24

with the bootstrap critical value of 20.35 at the 1% level. We also run a test for y1 = 2 and y2 = 61

(75% of the sample falls in this range) and obtained Tn = 11.63 and c∗0.01 = 5.87. Thus, we reject the

loglinear specification and conclude that the differences between the nonparametric and parametric

functions in Figure 3 are caused by misspecification of the transformation function rather than being

merely a consequence of the estimation error.

5 Discussion

Our test can be embedded into a formalized specification search procedure using ideas in Romano &

Wolf (2005). In other words, one can consider multiple parametric null models and run a stepwise

multiple testing procedure to choose the correct specification, controlling family-wise error rate at

the desired level.

Similarly to testing the form of Λ, one may test the form of the distribution of U using the

estimator for F proposed in Ye & Duan (1997) or Horowitz (1996). One can also apply a procedure

used in Horowitz (1996) to derive an estimator for F based on CS. Since the estimators of F usually

satisfy conditions equivalent to Assumptions 1-5, the same reasoning may be used to derive a CvM

test. Such a test may be used to test the form of unobserved heterogeneity (i.e. distribution of V
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in (7), FV ) in the MPH model. As pointed out by Heckman & Singer (1984), the estimates of the

parameters of the MPH model can be very sensitive to the choice of the parametric form of FV .

Therefore, it may be interesting to see if some parametric specifications are at odds with a nonpara-

metric estimate. Specifically, one may want to test for the presence of unobserved heterogeneity,

i.e. test if V = 0 in (7). The tests available so far require X to be discrete (usually X distinguishes

separate samples), whereas the procedure applied here allows continuously distributed explanatory

variables.

Appendix

A Proofs

Let:

H = {hθ,y(w1, w2, . . . , wm) : θ ∈ Θ ⊂ Rd, y ∈ Y ⊂ R+}

be a family of real-valued functions defined on Wm. We will use the operator notation common

in the U-statistics literature. For example, for the case of m = 2 we will have P 0h = h, P 2h =∫ ∫
h(w1, w2)dP (w1)dP (w2), Pnh(w1) = 1/n

∑n
i=1 h(w1,Wi) and P ∗nh(w1) = 1/n

∑n
i=1 h(w1,W

∗
i )

etc. We say that a symmetric function h is P -canonical if Ph(w1, . . . , wm−1, ·) = 0 for almost all

w1, . . . , wm−1.

Define an U -process:

U (m)
n hθ,y =

(n−m)!

n!

∑
i1, i2, . . . , im distinct

hθ,y(Wi1 ,Wi2 , . . . ,Wim)

and denote the same process evaluated on a bootstrap sample as U∗(m)
n hθ,y.

We will only discuss the model with censoring (i.e. we focus on nonparametric bootstrap) so Y

is the censored observation on the dependent variable. Define π(y) = P (Y ≥ y) and:

M(y) = 1{Y ≤ y, δ = 0} −
∫ y

0
1{Y ≥ u}dΛC(u)
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where ΛC is the integrated hazard of the censoring variable C. Proofs for the uncensored case (in-

cluding proofs for parametric bootstrap) follow similar and, in fact, simpler arguments and therefore

are omitted.

In order to handle joint randomness in the sample and in bootstrap we can use the following

formulation:

P ∗nh =
1

n

n∑
i=1

Lnih(Wi)

where the bootstrap weights (Ln1, . . . , Lnn) ∼ Multinomial(n, (n−1, . . . , n−1)) are defined on the

probability space (L, C, PL). We can view W1, . . . ,Wn as the coordinate projections on the first

n coordinates of the canonical probability space (W∞,A∞, P∞W ). Thus, for the analysis of joint

randomness we can define the product probability space:

(W∞,A∞, P∞W )× (L, C, PL) = (W∞ × L,A∞ × C, PWL)

where PWL = PW × PL since bootstrap weights are independent of the data. Equipped with

this formal setup, for any S∗ defined on this joint probability space the expectation operator E is

understood as:

E[S∗] = PWLS
∗ = PWPL|WS

∗

and we say that a real-valued function f(S∗) is of an order op(1) when PW (PL|W (|f(S∗)| > ε) >

η) → 0 for any ε, η > 0 as n → ∞. Similarly, f(S∗) is of an order Op(1) if, for any η > 0, there

exists 0 < K <∞ such that PW (PL|W (|f(S∗)| > K) > η)→ 0 as n→∞. We will also frequently

use the following stochastic order arithmetic, for a sequence an:

o∗p(an) + op(an) = op(an), O∗p(an) +Op(an) = Op(an)

which follows from the Law of Iterated Expectations.14

14Cheng & Huang (2010) derive such arithmetic for convergence in outer probability.
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A.1 Useful lemmas

Lemma 1. (Lo & Singh (1986)) Let Ḡ0 be a continuous survival function of the censoring

variable and Ḡn and Ḡ∗n be Kaplan-Meier estimators of Ḡ0 on the original and the bootstrap sample,

respectively. Then:

Ḡ0(y)− Ḡn(y)

Ḡ0(y)
= Pn

∫ y

0

1

π(s)
dM(s) + op(n

−1/2)

Ḡ0(y)− Ḡ∗n(y)

Ḡ0(y)
= P ∗n

∫ y

0

1

π(s)
dM(s) + op(n

−1/2)

uniformly over {y : π(y) > c} for some c > 0.

Proof. This lemma follows from Theorem 1 in Lo & Singh (1986). They show that uniformly over

{y : π(y) > c}:

Gn(y)−G0(y)

Ḡ0(y)
= Pnξ(y) + op(n

−1/2),
G∗n(y)−Gn(y)

Ḡ0(y)
= (P ∗n − Pn)ξ(y) + o∗p(n

−1/2),

where ξ(y) = 1
π(Y )1{Y ≤ y, δ = 0}+

∫ min{Y,y}
0

1
π(s)2dπ1(s) and π1(s) = 1− P (Y ≤ s, δ = 0).

But we have dπ1(s)
π(s) = d log Ḡ0(s) (see equation (7) in Lo & Singh (1986)). Now using the fact

that the integrated hazard can be expressed as ΛC(s) = − log Ḡ0(s) and 1
π(Y )1{Y ≤ y, δ = 0} =∫ y

0
1

π(s)d1{Y ≤ y, δ = 0} we obtain ξ(y) =
∫ y

0
1

π(s)dM(y). Finally:

Ḡ0(y)− Ḡ∗n(y)

Ḡ0(y)
=
Ḡ0(y)− Ḡn(y)

Ḡ0(y)
+
Ḡn(y)− Ḡ∗n(y)

Ḡ0(y)
= P ∗n

∫ y

0

1

π(s)
dM(s) + op(n

−1/2)

The next lemma is similar to Lemma 8 in Subbotin (2007). An important innovation compared

to his result is that our proof obviates making additional assumptions about the moments of the

kernel function h ∈ H (and its envelope) when the arguments of the function are permuted with

repetitions. This is possible because decoupling and poissonization arguments akin to those in the

proof of Corollary 4.2 in Arcones & Gine (1993) break down the unconditional dependence between

arguments of h when evaluated at the bootstrap draws.

Lemma 2. Let H be a Euclidean class of P -canonical symmetric functions with envelope H such
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that PmHmax{p,2} < ∞ for a positive integer p. Let Hn be a sequence of subclasses of H with

suph∈Hn P
mh2 → 0 as n→∞. Then:

(a)
(
P suph∈H

∣∣∣U (m)
n h

∣∣∣p)1/p
= O(n−m/2)

(b)
(
P suph∈Hn

∣∣∣U (m)
n h

∣∣∣p)1/p
= o(n−m/2)

(c)
(
P suph∈H

∣∣∣U∗(m)
n h

∣∣∣p)1/p
= O(n−m/2)

(d)
(
P suph∈Hn

∣∣∣U∗(m)
n h

∣∣∣p)1/p
= o(n−m/2)

Proof. In order to economize on notation let ‖ · ‖H ≡ suph∈H ‖ · ‖ where ‖ · ‖ is the Euclidean norm.

We will also write . for inequality up to a multiplicative constant where the constant does not

depend on the sample size n or the sample data (but may depend on p,m and characteristics of H).

Part (a) The result for p = 1 follows from Corollary 4(i) in Sherman (1994). Note that by Hoffman-

Jørgensen inequality (Corollary 4 in Giné & Zinn (1992)):

P‖U (m)
n h‖pH .

(
P‖U (m)

n h‖H
)p

+ P max
im

∥∥∥∥∥∥∥∥
(n−m)!

n!

∑
i1, . . . , im−1:

(i1, . . . , im) distinct

h(Wi1 , . . . ,Wim)

∥∥∥∥∥∥∥∥
p

H

(13)

Thus, it remains to show that the second term is O(n−pm/2). We have:

P max
im

∥∥∥∥∥∥∥∥
(n−m)!

n!

∑
i1, . . . , im−1:

(i1, . . . , im) distinct

h(Wi1 , . . . ,Wim)

∥∥∥∥∥∥∥∥
p

H

. P
∑
im

∥∥∥∥∥∥∥∥
(n−m)!

n(n− 1)!

∑
i1, . . . , im−1:

(i1, . . . , im) distinct

h(Wi1 , . . . ,Wim)

∥∥∥∥∥∥∥∥
p

H

. n−p+1E

[
E

[∥∥∥U (m−1)
n−1 h(·,Wim)

∥∥∥p
H

∣∣∣∣∣Wim

]]

Partition W = (Wk,W−k) where Wk ∈ Wk and W−k ∈ Wm−k and note that fixing W−k = w−k the

class of functions H−k = {h(·, w−k) : h ∈ H} inherits its properties from H. In particular, for any

k and w−k class H−k is a Euclidean class of P -canonical symmetric functions. Now using (13) for

U
(m−1)
n−1 h(·,Wim), Corollary 4(i) in Sherman (1994) and argument in the previous display repeatedly
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we obtain for p ≥ 2:

P‖U (m)
n h‖pH . O(n−pm/2) + n(−p+1)(m−1)E

E
∥∥∥∥∥ 1

n−m+ 1

∑
i1

h(Wi1 ,Wi2 , . . . ,Wim)

∥∥∥∥∥
p

H

∣∣∣∣∣Wi2 , . . . ,Wim


. O(n−pm/2) + n(−p+1)mPmHp = O(n−pm/2)

where H is the envelope of the class H and the last inequality follows from triangle inequality. This

completes the proof of part (a).

Part (b) The result for p = 1 follows from Corollary 8 in Sherman (1994). For p ≥ 2, apply the same

iterative argument as in the proof of part (a) repeatedly using suph∈Hn P
mh2 → 0 and Corollary 8

in Sherman (1994). In the final step we obtain:

P‖U (m)
n h‖pHn . o(n−pm/2) + n(−p+1)(m−1)E

E
∥∥∥∥∥ 1

n−m+ 1

∑
i1

h(Wi1 ,Wi2 , . . . ,Wim)

∥∥∥∥∥
p

Hn

∣∣∣∣∣Wi2 , . . . ,Wim


. o(n−pm/2) + n(−p+1)(m−1)E

[
E

[
‖(Pn − P )h(·,Wi2 , . . . ,Wim)‖pHn

∣∣∣∣∣Wi2 , . . . ,Wim

]]

. o(n−pm/2) + o(n−pm/2)n(1−p/2)(m−1) = o(n−pm/2)

where the second inequality is a result of h being P -canonical and the third follows from asymptotic

equicontinuity of the empirical process (Pn − P )h (using suph∈Hn P
mh2 → 0).

Part (c) Proof of this part follows from applying decoupling and poissonization techniques used in

Gine & Zinn (1990) and Arcones & Gine (1993). First by Hoeffding decomposition:

U∗(m)
n h =

m∑
k=0

(
m

k

)
U∗(k)
n

(
πPnk,mh

)
(14)

where πPnk,mh(w1, . . . , wk) = (δw1 − Pn) . . . (δwk − Pn)Pm−kn h and δw1h = h(w1, ·).

We will show that P‖U∗(k)
n (πPnk,mh)‖pH = O(n−pm/2) for each k = 0, . . . ,m. Note that under our

assumptions πPnk,mh(w1, . . . , wk) are Pn-canonical symmetric functions. Let {W ∗(k)
i : i = 1, . . . , n}mk=1

be i.i.d. copies of {W ∗i : i = 1, . . . , n} and let {εi : i = 1, . . . , n} denote a sequence of Rademacher

random variables independent of W ∗i ’s. Similarly, define {ε(k)
i : i = 1, . . . , n}mk=1 to be independent
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copies of {εi : i = 1, . . . , n}. We have:

P
∥∥∥U∗(k)

n

(
πPnk,mh

)∥∥∥p
H

= P

∥∥∥∥∥∥(n− k)!

n!

∑
i1, . . . , ik distinct

πPnk,mh(W ∗i1 , . . . ,W
∗
ik

)

∥∥∥∥∥∥
p

H

. P

∥∥∥∥∥∥(n− k)!

n!

∑
i1, . . . , ik distinct

ε
(1)
i1
. . . ε

(k)
ik
πPnk,mh(W

∗(1)
i1

, . . . ,W
∗(k)
ik

)

∥∥∥∥∥∥
p

H

. P

∥∥∥∥∥∥(n− k)!

n!

∑
i1, . . . , ik distinct

ε
(1)
i1
. . . ε

(k)
ik
Pm−kn h(W

∗(1)
i1

, . . . ,W
∗(k)
ik

)

∥∥∥∥∥∥
p

H

= (?)

where the first inequality follows by decoupling (see Proposition 2.1 in Arcones & Gine (1993)) and

the second by repeated application of Jensen’s inequality (argument here follows from the fact that

by Jensen’s inequality E‖X‖pH ≤ E‖X +Y ‖pH when E[Y |X] = 0, for example when k = m = 2 and

letting W̃ ∗(1)
i denote an independent copy of W ∗(1)

i and EW = {ε(1)
i , ε

(2)
i ,W

∗(1)
i ,W

∗(2)
i }ni=1 we have:

P

∥∥∥∥∥∥
∑
i 6=j

ε
(1)
i ε

(2)
j πPn

2,2h(W
∗(1)
i ,W

∗(2)
j )

∥∥∥∥∥∥
p

H

=

= P

∥∥∥∥∥∥
∑
i 6=j

ε
(1)
i ε

(2)
j (δ

W
∗(1)
i
− Pn)(δ

W
∗(2)
j
− Pn)h− EPn

∑
i 6=j

ε
(1)
i ε

(2)
j (δ

W̃
∗(1)
i
− Pn)(δ

W
∗(2)
j
− Pn)h

∣∣∣∣∣EW
∥∥∥∥∥∥

p

H

. P

∥∥∥∥∥∥
∑
i 6=j

ε
(1)
i ε

(2)
j δ

W
∗(1)
i

(δ
W

∗(2)
j
− Pn)h−

∑
i 6=j

ε
(1)
i ε

(2)
j δ

W̃
∗(1)
i

(δ
W

∗(2)
j
− Pn)h

∥∥∥∥∥∥
p

H

. P

∥∥∥∥∥∥
∑
i 6=j

ε
(1)
i ε

(2)
j δ

W
∗(1)
i

(δ
W

∗(2)
j
− Pn)h

∥∥∥∥∥∥
p

H

. . . . . P

∥∥∥∥∥∥
∑
i6=j

ε
(1)
i ε

(2)
j h(W

∗(1)
i ,W

∗(2)
j )

∥∥∥∥∥∥
p

H

where EPn denotes expectation with respect to the empirical measure Pn).

Introduce Z∗i1 =
∑

i2, . . . , ik 6= i1 distinct ε
(2)
i2
. . . ε

(k)
ik
Pm−kn h(W

∗(1)
i1

, . . . ,W
∗(k)
ik

). Conditional on

{ε(2)
i2
, . . . , ε

(k)
ik
,W
∗(2)
i2

, . . . ,W
∗(k)
ik
}, Z∗i1 ’s are bootstrap draws from the sample {Zi : i = 1, . . . , n}

where Zi1 =
∑

i2, . . . , ik 6= i1 distinct ε
(2)
i2
. . . ε

(k)
ik
Pm−kn h(Wi1 ,W

∗(2)
i2

, . . . ,W
∗(k)
ik

).

Let {Ñ (k)
i : i = 1, . . . , n}mk=1 denote independent copies of a sequence of differences between two

independent Poisson random variables with parameter 1/2. Now applying Proposition 2.2 in Gine
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& Zinn (1990) we get:

(?) = P

∥∥∥∥∥(n− k)!

n!

∑
i1

ε
(1)
i1
Z∗i1

∥∥∥∥∥
p

H

. P

∥∥∥∥∥(n− k)!

n!

∑
i1

Ñ
(1)
i1
Zi1

∥∥∥∥∥
p

H

. P

∥∥∥∥∥(n− k)!

n!

∑
i1

N
(1)
i1
Zi1

∥∥∥∥∥
p

H

= P

∥∥∥∥∥∥(n− k)!

n!

∑
i1, i2 distinct

N
(1)
i1
ε
(2)
i2
Z∗i2

∥∥∥∥∥∥
p

H

where Ni1 is a Poisson random variable with parameter 1/2 and

Z∗i2 =
∑

i3, . . . , ik 6= i1, i2, distinct

ε
(3)
i3
. . . ε

(k)
ik
Pm−kn h(Wi1 ,W

∗(2)
i2

, . . . ,W
∗(k)
ik

)

The second inequality follows from triangle inequality. Iterating in this fashion and repeatedly using

Proposition 2.2 in Gine & Zinn (1990) (additionally conditioning on previously introduced Poisson

variables) we obtain:

(?) . P

∥∥∥∥∥∥ (n− k)!

n!

∑
i1, . . . , ik distinct

N
(1)
i1

. . . N
(k)
ik
Pm−kn h(Wi1 , . . . ,Wik)

∥∥∥∥∥∥
p

H

= P

∥∥∥∥∥∥ (n− k)!

n!

∑
i1, . . . , ik distinct

N
(1)
i1

. . . N
(k)
ik
EPn

 1

n− k
∑

ik+1 6=i1,...,ik

Pm−k−1n h(Wi1 , . . . ,Wik ,W
∗
ik+1

)

∣∣∣∣Wi1 , . . . ,Wik

∥∥∥∥∥∥
p

H

. P

∥∥∥∥∥∥ (n− k)!

n!(n− k)

∑
i1, . . . , ik+1 distinct

N
(1)
i1

. . . N
(k)
ik
Pm−k−1n h(Wi1 , . . . ,Wik ,Wik+1

)

∥∥∥∥∥∥
p

H

. . . .

. P

∥∥∥∥∥∥ (n−m)!

n!

∑
i1, . . . , im distinct

N
(1)
i1

. . . N
(k)
ik
h(Wi1 , . . . ,Wim)

∥∥∥∥∥∥
p

H

. P

∥∥∥∥∥∥ (n−m)!

n!

∑
i1, . . . , im distinct

N
(1)
i1

. . . N
(m)
im

h(Wi1 , . . . ,Wim)

∥∥∥∥∥∥
p

H

where EPn denotes expectation with respect to the empirical measure Pn, second inequality follows

from Jensens’s inequality, fourth line comes from iterating this argument and final inequality follows

again from Jensen’s inequality using the fact that E[N
(k+1)
ik+1

. . . N
(m)
ik

] > 0.

Now define h̃((N
(1)
i1
,Wi1), . . . , (N

(m)
im

,Wim)) = N
(1)
i1

. . . N
(m)
im

h(Wi1 , . . . ,Wim), let P̃ denote the

distribution of {Wi, N
(1)
i , . . . , N

(m)
i } and note that the class of functions H̃ inherits its properties

from H, in particular it is a Euclidean class of P̃ -canonical symmetric functions with envelope H̃

satisfying P̃mH̃max{p,2} < ∞ for p ≥ 1. Hence, our derivation and part (a) imply that for any
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k ≤ m:

P‖U∗(k)
n

(
πPnk,mh

)
‖pH . P‖U (m)

n h̃‖pH̃ = O(n−pm/2) (15)

and the final result follows from (14).

Part (d) Note that suph∈Hn P
mh2 → 0 implies suph̃∈H̃n P̃

mh̃2 → 0 as Ni’s are independent of

Wi’s. So the result follows from (15) and part (b).

Lemma 3. Let hθ0,y = 0 for all y ∈ Y and define τθ,y(w) = Pm−1hθ,y(w). If |hθ,y(w1, . . . , wm)| < H

for some 0 < H <∞ and:

(a) Θ ⊂ Rdθ and Y ⊂ Rdy are compact sets, Pmhθ,y is continuous on Θ for every y ∈ Y,

(b) H is a Euclidean class of symmetric functions,

(c) there is an open neighborhood N ⊂ Θ of θ0 such that:

(i) all mixed partial derivatives of τθ,y(w) with respect to θ of orders 1 and 2 exist on N for

all y ∈ Y,

(ii) there is a square P-integrable function K(w) such that for all w, y, y′ ∈ Y and all θ in N :

‖vec(∂2τθ,y(w))− vec(∂2τθ0,y′(w))‖ ≤ K(w)
√
‖θ − θ0‖2 + ‖y − y′‖2

where ∂2τ is the Hessian matrix of τ with respect to θ,

(iii) the gradient of τθ,y with respect to θ at θ0, ∂τθ0,y(w), has finite variance relative to P for

all y ∈ Y and P∂τθ0,y = 0,

(iv) the elements of the matrix A(y) = −P [∂2τθ0,y] are finite for all y ∈ Y

(d) as θ → θ0, Pmh2
θ,y → 0 for all y ∈ Y,

then

P sup
θ∈Θ,y∈Y

|U∗(m)
n hθ,y − Pmhθ,y| → 0 (16)
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and uniformly over y ∈ Y:

U (m)
n hθ,y = (θ − θ0)′mPn∂τθ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + op(‖θ − θ0‖2) + op(n

−1) (17)

U∗(m)
n hθ,y = (θ − θ0)′mP ∗n∂τθ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + op(‖θ − θ0‖2) + op(n

−1) (18)

as θ → θ0.

Proof. This result follows from Lemma 2 and arguments leading to Theorem 2 in Subbotin (2007).

The only difference is that the function h is indexed by y in addition to θ. Also note that we do not

need invertibility of A here (his Assumption 3(iv)). For completeness we give details of the proof

of (18) ((17) follows by similar arguments).

Use the following Hoeffding decomposition for the bootstrapped U-statistic (see Subbotin (2007)

for details):

U∗(m)
n hθ,y = (θ − θ0)′mP ∗n∂τθ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + ζ̂θ,y

where

ζ̂θ,y = P ∗nRθ,y +

m∑
k=2

(
m

k

)
U∗(k)
n πPk,mhθ,y(w1, . . . , wk)

δwkhθ,y(·) = hθ,y(·, wk, ·)

Rθ,y(w) = [Pmhθ,y +mπP1,mτθ,y](w)−m(θ − θ0)′∂τθ0,y(w) +
1

2
(θ − θ0)′A(y)(θ − θ0).

and πPk,m is defined analogously to πPnk,m above.

Condition (c) and second order Taylor expansion around θ0 imply:

|P ∗nRθ,y| ≤ m‖(P ∗n − P )∂2τθ0,y‖‖θ − θ0‖2 +m(PK + P ∗nK)‖θ − θ0‖3

in the neighborhood of θ0.

First we will show that

sup
y,‖θ−θ0‖≤δn

|P ∗nRθ,y|
‖θ − θ0‖2

= op(1) (19)
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for δn → 0. Note that condition (c) implies that PK + P ∗nK = Op(1) (by Theorem 2.1 in Bickel

& Freedman (1981)) and that ∂2T0 = {vec(∂2τθ0,y(w)) : y ∈ Y ⊂ Rdy} is a Euclidean class of

functions (by Lemma 2.13 in Pakes & Pollard (1989)). Thus, by the uniform law of large numbers

and bootstrap uniform law of large numbers (Theorem 3.5 in Gine & Zinn (1990)) we have ‖(Pn −

P )∂2τθ0,y‖ = op(1) and ‖(P ∗n − Pn)∂2τθ0,y‖ = o∗p(1) uniformly over y, which implies supy ‖(P ∗n −

P )∂2τθ0,y‖ = op(1) and (19) follows.

Using conditions (b), (d) and Lemma 2 we get:15

P sup
y,‖θ−θ0‖≤δn

∣∣∣∣∣
m∑
k=2

(
m

k

)
U∗(k)
n πPk,mhθ,y(w1, . . . , wk)

∣∣∣∣∣ = o(n−1)

which, together with (19), implies

sup
y,‖θ−θ0‖≤δn

|ζ̂θ,y| = op(‖θ − θ0‖2) + op(n
−1).

This concludes the proof of (18).

A.2 Proof of Theorem 1

Assumptions 1-2 imply that γ̂−γ = Op(n
−1/2), β̂1−β1 = Op(n

−1/2) and Λn(y)−Λ0(y) = Op(n
−1/2)

uniformly over y ∈ [y1, y2]. Thus:

Tn =

∫ y2

y1

[Sn1(y) + Sn2(y) + Sn3(y) + Sn4(y)]2dy + op(1)

uniformly over y, where: Sn1(y) =
√
nβ1(Λn(y)−Λ0(y))w(y), Sn2(y) = −

√
n(Λ(y, γ̂)−Λ(y, γ))w(y),

Sn3(y) =
√
nΛ0(y)(β̂1 − β1)w(y), Sn4(y) =

√
n(β1Λ0(y)− Λ(y, γ))w(y).

Under the null we have Sn4(y) = 0 and by Assumption 2(c):

√
n(Λ(y, γ̂)− Λ(y, γ)) = −

√
n
∂Λ(y, γ)

∂γ

′
PnΩγ + op(1)

15Note that Jensen’s inequality implies Pm(πPk,mhθ,y)2 . Pmh2
θ,y. Thus, the second condition in Lemma 2 (with

Hn = {πPk,mhθ,y : y ∈ Y, ‖θ − θ0‖ ≤ δn}) follows from condition (d).
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uniformly over y. Hence, using Assumptions 1-3 we get:

Tn =

∫ y2

y1

Bn(y)2dy + op(1)

and the statement of the theorem follows from extended continuous mapping theorem (Theorem

1.11.1 in Van der Vaart & Wellner (1996)) and the results in Durbin & Knott (1972), Durbin et al.

(1975).

A.3 Proof of Theorem 2

We have:

T ∗n =

∫ y2

y1

[S∗n1(y) + S∗n2(y) + S∗n3(y)]2dy

uniformly over y, where: S∗n1(y) =
√
nβ̂1(Λ∗n(y)−Λn(y))w(y), S∗n2(y) = −

√
n(Λ(y, γ̂∗)−Λ(y, γ̂))w(y),

S∗n3(y) =
√
nΛ∗n(y)(β̂∗1 − β̂1)w(y).

We need to obtain a bootstrap linear approximation to
√
n(Λ∗n(y)−Λn(y)). Let θ = (b,Λ) where

b ∈ Θβ and Λ ∈ ΘΛ. Let Γ∗(y,G,Λ, b) = U∗n[r(w1, w2, G, y,Λ, b) + r(w2, w1, G, y,Λ, b)] denote the

symmetrized bootstrap rank objective function recentered at the true value Λ0 and note that Λ∗n is

its arg max. Similarly, let Γ(y,G,Λ, b) = P 2[r(W1,W2, G, y,Λ, b) + r(W2,W1, G, y,Λ, b)]. Define:

h1
θ,y(w1, w2) = 1{y1 ≥ y}(1{x1b− x2b ≥ Λ} − 1{x1b− x2b ≥ Λ0})

+ 1{y2 ≥ y}(1{x2b− x1b ≥ Λ} − 1{x2b− x1b ≥ Λ0})

h2
θ,y(w1, w2) = 1{y1 ≥ y0}(1{x1b− x2b ≥ Λ} − 1{x1b− x2b ≥ Λ0})

+ 1{y2 ≥ y0}(1{x2b− x1b ≥ Λ} − 1{x2b− x1b ≥ Λ0}).

We have:

Γ∗(y,G∗,Λ, b) = Γ∗(y,G0,Λ, b) + Γ∗(y,G∗,Λ, b)− Γ∗(y,G0,Λ, b)

=
1

Ḡ0(y)
U∗nh

1
θ,y −

1

Ḡ0(y0)
U∗nh

2
θ,y +

Ḡ0(y)− Ḡ∗(y)

Ḡ∗(y)Ḡ0(y)
U∗nh

1
θ,y −

Ḡ0(y0)− Ḡ∗(y0)

Ḡ∗(y0)Ḡ0(y0)
U∗nh

2
θ,y. (20)
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Define τ lθ,y(w) = Phlθ,y(w) and Al(y) = −P [∂2τ lθ,y] for l = 1, 2. We will use Lemma 3 to show that

P sup
θ∈Θ,y∈Y

|U∗nhlθ,y − P 2hlθ,y| → 0 (21)

and uniformly over y ∈ [y1, y2]:

Unh
l
θ,y = (θ − θ0)′2Pn∂τ

l
θ0,y −

1

2
(θ − θ0)′Al(y)(θ − θ0) + op(‖θ − θ0‖2) + op(n

−1) (22)

U∗nh
l
θ,y = (θ − θ0)′2P ∗n∂τ

l
θ0,y −

1

2
(θ − θ0)′Al(y)(θ − θ0) + op(‖θ − θ0‖2) + op(n

−1) (23)

for l = 1, 2 as θ → θ0.

Let us verify conditions of Lemma 3. Condition (a) is implied by Assumptions 4(b),(d),(e).

Chen (2002) showed that the classes of functions

Hl = {hlθ,y(w1, w2) : θ ∈ Θ ⊂ Rd, y ∈ Y ⊂ R+} l = 1, 2

are Euclidean for the envelope H = 2, thus condition (b) is satisfied. Condition (c) is implied by

Assumption 4(e). Finally, continuity of the distribution of U and X1 imply condition (d).

Now note that Lemma 1 and Assumption 5 imply that Ḡ0(y)−Ḡ∗n(y)
Ḡ0(y)

= op(1) and b∗n →p β0.

Combining this, equation (20), the result in (21) and using Assumption 4(e) we obtain:

Γ∗(y,G∗,Λ, b∗n) = Γ(y,G0,Λ, β0) + op(1)

uniformly over y ∈ Y and Λ ∈ ΘΛ. Chen (2002) showed that Λ0 is the unique maximizer of the

expression on the right, which implies consistency of Λ∗n(y) for Λ0(y). Now monotonicity of Λ∗n(y)

implies uniform consistency, i.e. supy |Λ∗n(y)−Λ0(y)| = op(1), by the same argument as in the proof

of Theorem 1 in Chen (2002).

Note that
∂τ lθ,y
∂b

∣∣
Λ=Λ0

= 0 and P
∂2τ lθ,y
∂b2

∣∣
Λ=Λ0

= 0. Let V l
Λb(y) = −P ∂2τ lθ,y

∂Λ∂b

∣∣
θ=θ0

and V l(y) =

−P ∂2τ lθ,y
∂Λ2

∣∣
θ=θ0

. Then (23) becomes:

U∗nh
l
θ,y = (Λ− Λ0)2P ∗n

∂τ lθ0,y
∂Λ

− (Λ− Λ0)V l
Λb(y)′(b− β0)− 1

2
(Λ− Λ0)2V l(y) + op((Λ− Λ0)2) + op(n

−1)

(24)
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as Λ→ Λ0 and b→ β0.

Chen (2002) shows that under our assumptions the class of functions ∂T0 = {∂τθ0,y(w) : y ∈ Y ⊂

R+} is Euclidean with a square integrable envelope. Similar argument shows that the same property

holds for ∂2T0 = {vec(∂2τθ0,y(w)) : y ∈ Y ⊂ R+} (see also proof of Lemma 3). Thus, Theorem 3.5

in Gine & Zinn (1990) gives: supy ‖(P ∗n − Pn)∂τθ0,y‖ = O∗p(n
−1/2) and supy ‖(P ∗n − Pn)∂2τθ0,y‖ =

O∗p(n
−1/2) and similarly supy ‖(Pn−P )∂τθ0,y‖ = Op(n

−1/2) and supy ‖(Pn−P )∂2τθ0,y‖ = Op(n
−1/2).

This and Lemma 1 imply that the third and the fourth term in (20) can be written as:

(Λ− Λ0)

(
2

Ḡ0(y)
P
∂τ1

θ0,y

∂Λ
P ∗n

∫ y

0

1

π
dM − 2

Ḡ0(y0)
P
∂τ2

θ0,y

∂Λ
P ∗n

∫ y0

0

1

π
dM

)

+ op((Λ− Λ0)2) + op((Λ− Λ0)/
√
n) + op(n

−1) (25)

uniformly over y.

Note that V (y) = V 1(y)

G0(y)
− V 2(y)

G0(y0)
and ∂τ(W,y,Λ0)

∂Λ = 1
G0(y)

∂τ1
θ0,y

∂Λ − 1
G0(y0)

∂τ2
θ0,y

∂Λ . Define VΛb =

V 1
Λb

G0(y)
− V 2

Λb

G0(y0)
. Thus, substituting (24) and (25) into (20) and using Assumption 5 we obtain:

Γ∗(y,G∗,Λ, b∗n) = (Λ− Λ0)P ∗nΩΛ,y −
1

2
(Λ− Λ0)2V (y) + op((Λ− Λ0)2) + op((Λ− Λ0)/

√
n) + op(n

−1)

where

ΩΛ,y = 2
∂τ(W, y,Λ0)

∂Λ
+

2

Ḡ0(y)

∫ y

0

1

π
dM

(
P
∂τ1

θ0,y

∂Λ

)
− 2

Ḡ0(y0)

∫ y0

0

1

π
dM

(
P
∂τ2

θ0,y

∂Λ

)
− VΛb(y)′ΩNP

uniformly over y. Now using supy |Λ∗n(y) → Λ0(y)| → 0 one can proceed as in Sherman (1993) to

show that:

√
n(Λ∗n(y)− Λ0(y)) = V (y)−1P ∗nΩΛ,y + op(1)

uniformly over y. From Chen (2002) and Jochmans (2012):

√
n(Λn(y)− Λ0(y)) = V (y)−1PnΩΛ,y + op(1)

and the class of functions J = {J(·, y) = V (y)−1ΩΛ,y(·)} is Euclidean with square integrable
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envelope. Now:

√
n(Λ∗n(y)− Λn(y)) = V (y)−1(P ∗n − Pn)ΩΛ,y + op(1)

and by Theorem 3.5 in Gine & Zinn (1990) we have supy |Λ∗n(y) − Λn(y)| = Op(n
−1/2), which

together with Assumption 2(d) yields:

S∗n1(y) =
√
nβ1V (y)−1(P ∗n − Pn)ΩΛ,yw(y) + op(1).

uniformly over y. Further, Assumptions 2(b)-(d), Assumption 5 and Theorem 2.2 in Bickel &

Freedman (1981) imply:

S∗n2(y) = −
√
n
∂Λ(y, γ)

∂γ

′
(P ∗n − Pn)Ωγw(y) + op(1)

S∗n3(y) =
√
nΛ0(y)(P ∗n − Pn)Ω1w(y) + op(1)

uniformly over y. Denote B∗n(y) =
√
n(P ∗n−Pn)[β1V (y)−1ΩΛ,y− ∂Λ(y,γ)

∂γ Ωγ+Λ0(y)Ω1]w(y). Now note

that functions Ωγ and Ω1 are not indexed by y and w(y), ∂Λ(y,γ)
∂γ w(y) and Λ0(y)w(y) are constant

for fixed y. Thus, by Lemma 2.14 in Pakes & Pollard (1989), Theorem 3.5 in Gine & Zinn (1990)

and the extended continuous mapping theorem (Theorem 1.11.1 in Van der Vaart & Wellner (1996))

we have that
∫ y2

y1
B∗2n (y)dy converges weakly to

∫ y2

y1
B2(y)dy in conditional probability. Additionally,

by continuity of the distribution of
∫ y2

y1
B2(y)dy and monotonicity of CDFs this implies:

sup
t≥0

∣∣∣∣P ∗n1

{∫ y2

y1

B∗2n (y)dy ≤ t
}
− P1

{∫ y2

y1

B2(y)dy ≤ t
}∣∣∣∣ = op(1) (26)

By Theorem 1:

sup
t≥0

∣∣∣∣P1{Tn ≤ t} − P1

{∫ y2

y1

B2(y)dy ≤ t
}∣∣∣∣ = o(1) (27)

By our derivation above T ∗n =
∫ y2

y1
B∗2n (y)dy + op(1) which implies:

sup
t≥0

∣∣∣∣P1{T ∗n ≤ t} − P1

{∫ y2

y1

B∗2n (y)dy ≤ t
}∣∣∣∣ = o(1) (28)
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Putting (26), (27) and (28) together and using Law of Iterated Expectations we obtain

sup
t≥0
|P1{T ∗n ≤ t} − P1{Tn ≤ t}| = op(1)

Now taking t = c∗κ concludes the proof.

A.4 Proof of Theorem 3

The proof follows lines similar to the proof of Theorem 2. We proceed in three steps. First we show

bootstrap linear representation for the first step estimator β∗(g) where g ∈ Ng. Second, using this

result we obtain similar representation for the bootstrap estimator of the Box-Cox parameter, γ̂. In

the third step we combine both results.

Step 1 Note that minimizing Sn(g, b) is the same as minimizing Sn(g, b) − Sn(g, β(g)) and

similarly for the bootstrap sample. Thus, we can write Sn(g, b) = U
(2)
n h1

θ and S∗n(g, b) = U
∗(2)
n h1

θ

where

h1
θ(w1, w2) = s(Λ(y1, g)− Λ(c, g),Λ(y2, g)− Λ(c, g), (x1 − x2)′b)

− s(Λ(y1, g)− Λ(c, g),Λ(y2, g)− Λ(c, g), (x1 − x2)′β(g)).

Additionally, define:

τ1
θ (w) = E[h1

θ(w,W ) + h1
θ(W,w)].

and let ∂βτ1
θ be the gradient and let ∂2

βτ
1
θ be the Hessian of τ1

θ with respect to β.

We can use Lemma 3 to show P supθ |U
∗(2)
n h1

θ − P 2h1
θ| → 0 and:

U (2)
n h1

θ = (b− β(g))′2Pn∂βτ
1
(g,β(g)) −

1

2
(b− β(g))′A1(g)(b− β(g)) + op(‖(b− β(g))‖2) + op(n

−1)

U∗(2)
n h1

θ = (b− β(g))′2P ∗n∂βτ
1
(g,β(g)) −

1

2
(b− β(g))′A1(g)(b− β(g)) + op(‖(b− β(g))‖2) + op(n

−1)

as θ = (g, b(g))→ (g, β(g)), uniformly over g ∈ Ng, where A = −P∂2
βτ

1
(g,β(g)).

Let us verify the conditions of Lemma 3. Assumption (a) is satisfied with Θβ and Nγ . Continuity

of P 2h1
θ for every g ∈ Ng follows from continuity of the function s(·, ·, ·). Part (b) follows from
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Assumption 4(e), compactness of Nγ × Θβ , continuous differentiability of s, condition (c) in the

statement of the theorem and Lemma 2.13 in Pakes & Pollard (1989). Parts (c) follows from

Assumption 4(e), compactness of Nγ × Θβ and condition (c) in the statement of the theorem.

Note that Lemma A.1 in Chen (2012) (our assumptions imply his Assumptions 1-4) implies that

P∂βτ
1
(g,β(g)) = 0 for all g ∈ Nγ . Finally, part (d) follows from continuity of s, compactness of Θβ

and dominated convergence theorem.

The previous derivation implies that

S∗n(g, b) = P 2h1
θ(W1,W2) + op(1)

holds uniformly over θ ∈ Nγ ×Θβ . Chen (2012) shows that the expression on the right is uniquely

minimized at β(g) for any g ∈ Nγ . It follows that β∗(g) is consistent for β(g) when g ∈ Nγ .

Proceeding as in the proof of Theorem 2 we obtain:

β∗(g)− β(g) = A−1
1 (g)2P ∗n∂βτ

1
(g,β(g)) + op(n

−1/2) (29)

Additionally, Chen (2012) shows that the class of functions ∂βτ1
(g,β(g)) is Euclidean with square

integrable envelope, which implies:

β∗(g)− β(g)− [β∗(γ)− β(γ)] = op(n
−1/2) (30)

for g ∈ Nγ .

Step 2 Again, recenter Rn to Rn(g, b) − Rn(γ, β) and similarly for the bootstrap sample. We

have Rn(g, b) =
∫∞
c

∫∞
c U

(2)
n hBCθ,y dΦ1(y1)dΦ2(y2) and R∗n(g, b) =

∫∞
c

∫∞
c U

∗(2)
n hBCθ,y dΦ1(y1)dΦ2(y2).

We can use Lemma 3 to show P supθ,y |U
∗(2)
n hBCθ,y − P 2hBCθ,y | → 0 and:

U (2)
n hBCθ,y = (θ − θ0)′2Pn∂τ

BC
θ0,y −

1

2
(θ − θ0)′ABC(y)(θ − θ0) + op(‖(θ − θ0)‖2) + op(n

−1)

U∗(2)
n hBCθ,y = (θ − θ0)′2P ∗n∂τ

BC
θ0,y −

1

2
(θ − θ0)′ABC(y)(θ − θ0) + op(‖(θ − θ0)‖2) + op(n

−1) (31)

as θ → θ0, uniformly over y, where ABC(y) = −P∂2τBCθ,y .

Let us verify the conditions of Lemma 3. Assumption (a) is implied by condition (a) in the
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statement of the theorem. Continuity of P 2hBCθ,y for every y ∈ Y follows from Assumptions 4(b),(e).

Part (b) has been shown by Chen (2012). Parts (c) follows from Assumption 4(e), compactness of

Θ and condition (c) in the statement of the theorem. Finally, part (d) follows from Assumption

4(b), continuity of Λ and argument similar to the proof of Theorem 4 in Sherman (1993), p.131.

Now

R∗n(θ) =

∫ ∞
c

∫ ∞
c

P 2hBCθ,y dΦ1(y1)dΦ2(y2) + op(1)

holds uniformly over θ ∈ Θ. Chen (2012) shows that the expression on the right is uniquely

minimized at θ0 = (γ, β). Now following arguments in the proof of Theorem 1 in his paper we can

show that (β∗(γ∗), γ∗) is consistent for (γ, θ). Further following his argument and using (31) and

(30) we arrive at:

R∗n(g, β∗(g))−R∗n(γ, β∗(γ)) = (g − γ)P ∗nΩγ −
1

2
(g − γ)2vBC + op((g − γ)2) + op(n

−1)

where:

Ωγ =

 1

dβ(γ)
dg


′

2

∫ ∞
c

∫ ∞
c

∂τBCθ0,ydΦ1(y1)dΦ2(y2) + VBC

 0

A−1
1 (γ)∂βτ

1
θ0


 , vBC =

 1

dβ(γ)
dg


′

VBC

 1

dβ(γ)
dg


which by the same argument as in the proof of Theorem 2 gives:

γ∗ − γ = v−1
BCP

∗
nΩγ + op(n

−1/2) (32)

Step 3 Putting (30), (29) and (32) together we obtain:

β∗(γ∗)− β = P ∗n

[
A−1

1 (γ)∂βτ
1
θ0 +

dβγ
dg

v−1
BCΩγ

]
+ op(n

−1/2) (33)

Now (33) and (32) imply:

P

∣∣∣∣β∗ − β − P ∗n [A−11 (γ)∂βτ
1
θ0 +

dβγ
dg

v−1BCΩγ

]∣∣∣∣ = o(n−1/2) and P
∣∣γ∗ − γ − v−1BCP ∗nΩγ

∣∣ = o(n−1/2) (34)

(see e.g. Theorem 1.4.C in Serfling (1980) where the uniform integrability follows from assumptions
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of the theorem). Finally, zero expectation and finite variance of the first term on the right hand

side in (33) and (32) follow from Chen (2012) and our assumptions.
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