
Online Appendix:

Testing a parametric transformation model versus a

nonparametric alternative

Arkadiusz Szydłowski∗

University of Leicester

October 29, 2019

A Additional proofs

A.1 Proof of Theorem 4

First, note that, due to centering at the sample estimators Λn and Λ(y, γ̂), bootstrap gives a valid

estimate of the asymptotic distribution of Tn under the null both when the data is generated

from the null model and the alternative model (in fact, the same argument as in the proof of

Theorem 2 applies with redefining γ and β1 as pseudo true values). Now, by Assumption 2 we have

Bn(y) = Op(n
−1/2) uniformly over y ∈ [y1, y2] which implies:

Tn
n

=

∫ y2

y1

[
1√
n
Bn(y) + q(y)w(y)

]2

dy + op(1) =

∫ y2

y1

[q(y)w(y)]2dy + op(1),

thus Tn →∞ and limn→∞ P (Tn > c∗κ) = 1.
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A.2 Proof of Theorem 5:

Using the spectral decomposition, under the sequence of local alternatives we get:

Tn =

∫ y2

y1

[Bn(y) + Λloc(y)w(y)]2dy + op(1) =

∫ y2

y1

 ∞∑
j=1

(bj + ϑj)ψj(x)

2

dy + op(1) =

=
∞∑
j=1

(bj + ϑj)
2 + op(1),

where {ψj : j = 1, 2, ...} form complete orthonormal basis of L2([y1, y2]) and bj ’s are asymptotically

N(0, ωj). Therefore, Tn →
∑∞

j=1 ωjχ1j(ϑ
2
j/ωj) (cf. Durbin & Knott (1972), Durbin et al. (1975)).

B Additional Monte Carlo simulations

B.1 Kolmogorov-Smirnov statistic

We re-run our Monte Carlo simulations in Table 1 in the main text using the following statistic:

TKSn = n max
y∈[y1,y2]

|(anΛn(y)− Λ(y, γ̂))w(y)| (1)

instead of the statistic in (2) (in the main text), with uniform weights w(y) = 1. In order to

calculate the max we perform a grid search with 100 equally-spaced points (same as the size of

Halton sequences used in the MC integration). Computation times are very similar to the Cramer-

von-Mises test. Results are in Table B.1.

Overall, coverage probabilities under the Null and Alternative 1 are very similar to our C-v-M

test. However, the KS test displays much lower power against Alternative 2 for n = 100 and n = 500

(especially with logistic shocks).

B.2 Alternative testing intervals [y1, y2]

The designs are the same as in Table 1 in the main text besides that we set [y1, y2] = [−3, 3] and

[y1, y2] = [−4, 4] here. Results are in Table B.2.
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B.3 Different censoring rates

We re-run the Monte Carlo simulations in Table 2 with censoring rates changed to 10% and 30%.

Comparing the results in Table B.3 to those in Table 2 we conclude that for moderate sample

sizes (n = 500 or n = 1000) higher rates of censoring lead to poorer size control and lower power of

our test. For small sample sizes in fact higher rate of censoring leads to better performance of the

test in many cases. This is due to the fact that higher rate of censoring leads to more observations

on Ci and, thus, more precise estimates of Ci’s survival function: with n = 100 we have 10 or 30

observations for estimation of this function with low and high censoring rate, respectively.

C Assumptions for
√
n-consistency of Han’s and Ichimura’s estima-

tor

We show that our Assumptions 1-4 are not at odds with assumptions in Han (1987) and Ichimura

(1993) and thus, after necessary strengthening, imply
√
n-consistency of their estimators of β0. Let

βn denote either of these estimators.

C.1 Maximum rank correlation, Han (1987)

The
√
n-consistency of βn follows from Theorem 4 in Sherman (1993). Let:

τ((x, y), b) = E[1{y > Yi}1{x′b > X ′ib}+ 1{Yi > y}1{X ′ib > x′b}]

Translated into our setup his assumptions A.1-A.4 are as follows:

A.1 β0 is an interior point of a compact set Θβ ⊂ Rq

A.2 X and U are independent.

A.3 The support of X is not contained in any proper linear subspace of Rq and X1 has an every-

where positive Lebesgue density, conditional on other components.

A.4 There exist a neighborhood of β0, Nβ , such that:

(i) For each (x, y) all mixed second partial derivatives of τ((x, y), ·) exist on Nβ .
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(ii) There is an integrable function M(x, y) such that for all (x, y) and all b ∈ Nβ :

‖vec(∂2τ((x, y), b))− vec(∂2τ((x, y), β0))‖ ≤M(x, y)‖b− β0‖

(iii) E‖∂τ(·, β0)‖2 <∞

(iv) E
[∑

i1,...,iq

∣∣∣ ∂q

∂βi1 ...∂βiq
τ(·, β0)

∣∣∣] <∞
(v) The matrix E[∂2τ(·, β0)] is negative definite.

A.1-A.3 follow from assumptions of the model (see p. 2) and our Assumption 4. According to

the discussion in Section 8 of Sherman (1993) a sufficient condition for the first four assumptions in

A.4 is that the conditional density of X1 given X−1 = x−1 and Y = y has bounded derivatives up

to order three for each (x−1, y). Assuming that [y1, y2] is contained in the support of Y and using

Bayes law, the latter would follow from strengthening of our Assumption 4(e) to:

Assumption 4(e)’. The conditional density of X1 given X−1 = x−1 and the density of U are

bounded and thrice continuously differentiable, the derivatives are uniformly bounded and X−1 has

finite third-order moments.

Also, as discussed in Section 6 of Sherman (1993), if Y is continuously distributed conditional

on X ′b (which is implied by our Assumption 4), condition A.4(v) follows from A.3.

C.2 Semiparametric least squares, Ichimura (1993)

Let Z = X ′b and fz denote its density. Assumptions in Ichimura (1993) translated into our model

are:

A.4.1 Λ is differentiable and non-degenerate.

A.4.2 The support of X is not contained in any proper linear subspace of Rq and X1 has an every-

where positive Lebesgue density, conditional on other components.

A.5.1 {Xi, Yi, δi : i = 1, . . . , n} is a random sample.

A.5.2 β0 is an interior point of a compact set Θβ ⊂ Rq.

A.5.3 There exist a compact subset of the support of X, X comp, such that:
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(i) supx∈X comp fz(x
′b) > 0

(ii) fz and E[Y |Z = z] are three times continuously differentiable with respect to z, and the

third derivatives satisfy Lipschitz conditions for all {z : z = x′b, x ∈ X comp} uniformly in

b ∈ Θβ .

A.5.4 E|Y |3 <∞ and V ar(Y |X = x) is uniformly bounded and bounded away from 0 on X comp.

A.4.1-A.5.4 follow from our Assumptions 1 and 4, if in the latter assumption we strengthen part

(e) to:

Assumption 4(e)”. The conditional density of X1 given X−1 = x−1 and the density of U are

bounded and thrice differentiable with third derivatives being Lipschitz continuous, the derivatives

are uniformly bounded and X−1 has finite third-order moments.

Additionally, in order to satisfy A.4.1 and A.5.3(ii) we need to assume that Λ is differentiable

with uniformly bounded first derivative.

D Sufficient conditions for Assumption 2(b) in Box-Cox and Bickel-

Doksum models

In this section we list assumptions needed for an asymptotic linear representation of Han’s esti-

mator in the Box-Cox and Bickel-Doksum transformation models. These assumptions are listed in

Asparouhova et al. (2002) where they also show that the Euclidean property in their A7 is satisfied

for these models, thus we skip it.

For wl = (xl, yl), l = 1, . . . , 4 define:

h(w1, w2, w3, w4, b, g) = 1{Λ(y1, g)− Λ(y2, g) > Λ(y3, g)− Λ(y4, g)}1{(x1 − x2)′b > (x3 − x4)′b}

− 1{Λ(y1, γ)− Λ(y2, γ) > Λ(y3, γ)− Λ(y4, γ)}1{(x1 − x2)′β > (x3 − x4)′β}

and:

τ(w, b, g) = E[h(w,W2,W3,W4, g, b) + h(W1, w,W3,W4, g, b) + h(W1,W2, w,W4, g, b) + h(W1,W2,W3, w, b, g)]
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Let ∂γτ and ∂2
γγτ denote the first and second derivative of τ with respect to the last argument.

A1 {Ui}ni=1 are i.i.d.

A2 The Xi’s are i.i.d. and independent of the Ui’s.

A3 X ′β is continuously distributed and U has a non-degenerate distribution.

A4 (β, γ) is an interior point of a compact set Θβ ×Θγ .

A5 For each g ∈ Θγ , Λ(·, g) is continuous and strictly increasing.

A6 With positive probability, Λ(·, g) is differentiable and nonlinear in Λ(·, γ) for g 6= γ.

A8
√
n(β̂ − β) = 1√

n

∑n
i=1 Ωβ(Yi, Xi, β) + op(1) as n → ∞ and 1√

n

∑n
i=1 Ωβ(Yi, Xi, β) →d

N(0, E[Ωβ(·, ·, β)Ωβ(·, ·, β)′])

A9 There exist a nondegenerate convex neighborhood of (β, γ), Nβγ , such that:

(i) For each w, τ(w, ·, ·) has continuous mixed third partial derivatives on Nβγ .

(ii) There is an integrable function M(w) such that for each w and (b, g) ∈ Nβγ :

|∂2
γγτ(w, b, g)− ∂2

γγτ(w, b, γ)| ≤M(w)|g − γ|

(iii) E|∂γτ(·, β, γ)|2 <∞

(iv) E‖∂2
γγτ(·, β, γ)‖ <∞

(v) The matrix E[∂2
γγτ(·, β, γ)] is negative definite.

A1-A9 essentially follow from assumptions of our model, Assumptions 2(c), 4(b)-(e) and addi-

tionally assuming E
[
supg∈Nγ

∣∣∣∂2Λ(Y,g)
∂g2

∣∣∣]2
< ∞. Linear representation in A8 is consistent with our

Assumption 2(d) and is satisfied by Han’s and Ichimura’s estimators under mild strengthening of

Assumption 4(e) (see Section C). Condition A9(v) follows from identification, established by Han

(1987).
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E Bootstrap asymptotic linear approximation for semiparametric

Box-Cox model

We will verify that Assumption 5 holds for the estimators of γ and β in the Box-Cox transformation

model proposed by Foster et al. (2001). The Box-Cox transformation is given by:

Λ(y, γ) =


yγ−1
γ if γ 6= 0

log y otherwise

Foster et al. (2001) suggest to estimate (γ0, β0) by minimizing: 1

Sn(γ, β) =

∫ ∞

0

1

n(n− 1)(n− 2)

∑
i, j, k distinct

(
1{Yi ≤ y} − 1{Λ(Yj , γ)−X ′

jβ ≤ Λ(y, γ)−X ′
iβ}
)

× (1{Yi ≤ y} − 1{Λ(Yk, γ)−X ′
kβ ≤ Λ(y, γ)−X ′

iβ}) dΨ(y)

where Ψ(y) is a differentiable, strictly increasing, deterministic and bounded weight function, subject

to the constraint:

1

n

n∑
i=1

Xi

(
Λ(Yi, γ)−X ′iβ

)
= 0

This problem is equivalent to minimizing:

Ln(θ) = Sn(γ, β) + µ′
1

n

n∑
i=1

Xi

(
Λ(Yi, γ)−X ′iβ

)
over θ = (γ, β, µ) ∈ Θ where µ is the Lagrange multiplier. Let θ∗ be the corresponding estimators

calculated on the bootstrap sample.

Let wl = (xl, yl), l = 1, 2, 3. Define:

hBCθ,y (w1, w2, w3) =
(
1{y1 ≤ y} − 1{Λ(y2, γ)− x2′β ≤ Λ(y, γ)− x1′β}

)
×
(
1{y1 ≤ y} − 1{Λ(y3, γ)− x3′β ≤ Λ(y, γ)− x1′β}

)
1In fact, Foster et al. (2001) state Sn in a form of a V-statistic. However, throughout their proofs they use the

U-statistic formulation given here. It follows from Lemma 5.7.3 in Serfling (1980), p.206, that these two formulations
are asymptotically equivalent.
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and:

τBC(w, y, θ) = E
[
hBCθ,y (w,W1,W2) + hBCθ,y (W1, w,W2) + hBCθ,y (W1,W2, w)

]
where the expectation is taken with respect to W1 = (X1, Y1) and W2 = (X2, Y2). It will be

convenient to define R(Wi, θ) = µ′Xi (Λ(Yi, γ)−X ′iβ). Now:

VBC = E

[∫ ∞
0

∂2τBC(W, y, θ0)dΨ(y)− ∂2R(W, θ0)

]
.

with ∂2τBC(W, y, θ) and ∂2R(W, θ) denoting the matrices of second derivatives of τBC(w, y, θ) and

R(W, θ) with respect to θ.

Theorem E.1. Let Assumptions 4(b),(c),(e) hold. Furthermore, assume:

(a) Ψ(y) is supported on a compact interval Y ⊂ (0,∞), Θ = Θγ ×Θβ ×Θµ is compact and (γ, β)

is an interior point of Θ,

(b) E
[
supg∈Θg

∣∣∣∂2Λ(Y,g)
∂g2

∣∣∣]2
<∞

(c) the elements of the matrix ∂2R(W, θ0) have finite variance,

(d) VBC is non-singular,

then Assumption 5 is satisfied for the estimators of (γ, β1) introduced in Foster et al. (2001).

Proof. The proof follows lines similar to the proof of Theorem 2 in the main text. We can write

Ln(θ) =

∫ ∞
0

U (3)
n hBCθ,y dΨ(y) + PnR(W, θ)

and

L∗n(θ) =

∫ ∞
0

U∗(3)
n hBCθ,y dΨ(y) + P ∗nR(W, θ)

Note that minimizing Ln(θ) = Sn(γ, β) + PnR(W, θ) is the same as minimizing L̃n(θ) = Sn(γ, β)−

Sn(γ0, β0) +Pn[R(W, θ)−R(W, θ0)] and similarly for the bootstrap problem. Thus, without loss of

generality we take Sn(γ0, β0) = 0 and R(W, θ0) = 0.
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We can use Lemma 3 to show P supθ,y |U
∗(3)
n hBCθ,y − P 3hBCθ,y | → 0 and:

U (3)
n hBCθ,y = (θ − θ0)′3Pn∂τ

BC
θ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + op(‖(θ − θ0)‖2) + op(n

−1)

U∗(3)
n hBCθ,y = (θ − θ0)′3P ∗n∂τ

BC
θ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + op(‖(θ − θ0)‖2) + op(n

−1)

as θ → θ0, uniformly over y, where A(y) = −P∂2τBC(W, y, θ0).

Let us verify the conditions of Lemma 3. Clearly, hBCθ,y is uniformly bounded. Assumption (a) is

satisfied with Y = {y : dΨ(y)
dy > 0} and follows from Assumptions 4(b),(e). Part (b) has been shown

by Foster et al. (2001). Assumption 4(e), boundedness of Y and E
[
supg∈Θγ

∣∣∣Y g log Y−Λ(Y,g)
g

∣∣∣]2
<∞

imply condition (c). Now note that with m = 3 condition (d) follows from continuity of the

distribution of U and X1.

Now using E
[
supg∈Θγ

∣∣∣Y g log Y−Λ(Y,g)
g

∣∣∣]2
< ∞ and Lemma 2.13 in Pakes & Pollard (1989) we

find that the class of functions R = {R(·, θ) : θ ∈ Θ} is Euclidean with square integrable envelope.

Hence, supθ |P ∗nR(W, θ) − PR(W, θ)| = op(1), which together with the previous derivation implies

that

L∗n(θ) =

∫ ∞
0

P 3hBCθ,y (W1,W2,W3)dΨ(y) + PR(W, θ) + op(1)

holds uniformly over θ ∈ Θ. Foster et al. (2001) show that the expression on the right is uniquely

maximized at θ0. It follows that θ∗ is consistent for θ0.

Next, we have as θ → θ0:

P ∗nR(W, θ) = (θ − θ0)′P ∗n∂R(W, θ0) + (θ − θ0)′P ∗n∂
2R(W, θ0)(θ − θ0) + op(‖(θ − θ0)‖2)

where ∂R(W, θ) denotes the gradient of R with respect to θ.

Putting the above linear representations for U∗(3)
n hBCθ,y and P ∗nR(W, θ) together and noting that

|P ∗n∂2R(W, θ0)−P∂2R(W, θ0)| = Op(n
−1/2) under condition (c) of the theorem we obtain, as θ → θ0:

L∗n(θ) = (θ − θ0)′P ∗n

[
3

∫ ∞
0

∂τBCθ0,ydΨ(y) + ∂R(W, θ0)

]
−1

2
(θ − θ0)′VBC(θ − θ0)

+ op(‖(θ − θ0)‖2) + op(n
−1)
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Now using the fact that VBC is invertible and proceeding as in the proof of Theorem 2 we get:

θ∗ − θ0 = V −1
BCP

∗
n

[
3

∫ ∞
0

∂τBCθ0,ydΨ(y) + ∂R(W, θ0)

]
+ op(n

−1/2)

which implies:

P

∣∣∣∣θ∗ − θ0 − V −1
BCP

∗
n

[
3

∫ ∞
0

∂τBCθ0,ydΨ(y) + ∂R(W, θ0)

]∣∣∣∣ = o(n−1/2)

(see e.g. Theorem 1.4.C in Serfling (1980) where the uniform integrability follows from assumptions

of the theorem). Finally, P
[
3
∫∞

0 ∂τBCθ0,ydΨ(y) + ∂R(W, θ0)
]

= 0 by first order condition of the

population maximization problem and V ar
[
3
∫∞

0 ∂τBCθ0,ydΨ(y) + ∂R(W, θ0)
]
has finite elements by

Assumption 4(e) and condition (c) in the statement of the theorem.

The requirement that the support of the weight function is compact and does not contain zero

is of technical nature and implies that the derivatives of the Box-Cox transformation are bounded.

In practice, if the weight function has full support on [0,∞], it can always be truncated above

and below such that the value of the objective function Sn is not affected. Similarly, Assumption

(b) ensures that the derivatives needed for a Taylor expansion have bounded moments. Further,

although ∂2τBC(W, y, θ) is singular for every y, E[∂2R(W, θ)] is non-singular in most of the cases,

which implies invertibility of VBC . For example, when X is one-dimensional and γ 6= 0:

E[∂2R(W, θ)] =


µ
γ2
E[2(Λ(Y, γ)− Y γ log Y ) + Y γ log2 Y ] 0 1

γE[X(Y γ log Y − Λ(Y, γ))]

0 0 −E[X2]

1
γE[X(Y γ log Y − Λ(Y, γ))] −E[X2] 0


E.1 Monte Carlo simulations

We verify finite sample performance of the test for the Box-Cox model using Monte Carlo simula-

tions. Due to the high computational burden of implementing the test for the Box-Cox model (note

that the estimator in Foster et al. (2001) requires minimizing a third order U statistic), we only run
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a small scale simulation study. We generate data from the log-linear and hyperbolic sin model:

log Y = X + U (Null)

1

13
sinh(2 log(Y )) = X + U (Alternative)

where both X and U are drawn from the standard normal distribution (see Figure 1).

Following the recommendation in Foster et al. (2001) we use standard normal distribution with

mean and variance equal to sample mean and variance of Y as the weighting function Ψ. We set

[y1, y2] = [0.1, 3.1]. Note that both functions are normalized at y0 = 1.

The results in Table E.1 confirm the conclusions from Section 3. The test performs well even in

small samples with a tendency to be slightly conservative. Moreover, the results suggest that the

test is consistent.
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Table B.1: Rejection probabilities, Kolmogorov-Smirnov test, no censoring

U ∼ Normal U ∼ Gumbel U ∼ Logistic
n = 100

10% 5% 1% 10% 5% 1% 10% 5% 1%
Null 9.2 3.6 0.5 9.8 5.5 1.5 7.0 3.2 0.6

Alternative 1 100.0 100.0 99.9 99.9 99.9 99.2 92.8 91.5 88.4
Alternative 2 79.6 52.4 8.4 55.2 26.6 2.6 17.4 5.7 0.2

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 10.5 5.4 1.0 8.8 5.1 1.7 9.0 4.6 1.1
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 97.5 97.1 96.7
Alternative 2 100.0 100.0 100.0 100.0 100.0 99.4 93.9 80.2 31.1

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 8.9 4.4 0.8 10.1 5.3 1.4 9.5 4.8 1.1
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 97.9 97.7 97.5
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 91.6

Note: 2000 Monte Carlo simulations, 500 bootstrap replications (parametric bootstrap).
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Table B.2: Rejection probabilities, no censoring

[y1, y2] = [−3, 3]

U ∼ Normal U ∼ Gumbel U ∼ Logistic
n = 100

10% 5% 1% 10% 5% 1% 10% 5% 1%
Null 7.6 3.7 0.6 6.1 3.6 1.2 5.9 2.3 0.2

Alternative 1 99.8 99.6 98.7 98.7 97.0 89.6 90.5 88.6 82.9
Alternative 2 98.7 94.4 69.0 95.8 87.2 44.3 71.5 45.6 10.6

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 10.6 5.7 1.0 9.0 4.4 1.0 8.5 4.3 0.7
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 96.5 96.1 95.7
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 99.8 97.3 74.7

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 9.7 4.5 0.9 10.4 5.0 1.1 9.4 4.9 1.1
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 97.4 97.2 96.4
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1

[y1, y2] = [−4, 4]

n = 100
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 5.9 3.1 0.6 5.8 2.8 0.8 6.0 3.2 0.6
Alternative 1 99.8 98.9 96.5 98.9 97.6 91.0 91.4 89.8 84.3
Alternative 2 93.3 85.8 53.0 74.1 61.3 32.0 38.1 24.9 7.9

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 10.7 5.2 1.1 10.6 5.3 1.0 10.2 5.6 1.5
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 96.7 96.4 95.8
Alternative 2 100.0 100.0 100.0 100.0 100.0 99.3 96.6 88.2 53.2

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 10.0 5.7 1.3 11.2 5.6 1.0 11.2 5.1 1.1
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 97.4 97.3 96.7
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 88.0

Note: 2000 Monte Carlo simulations, 500 bootstrap replications (parametric bootstrap).
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Table B.3: Rejection probabilities, different censoring rates

10% censoring rate
U ∼ Normal U ∼ Gumbel U ∼ Logistic

n = 100
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 2.3 1.1 0.1 2.2 0.4 0.2 1.5 0.2 0.0
Alternative 1 44.8 24.1 4.3 44.9 24.9 4.4 27.1 13.3 1.7
Alternative 2 30.5 15.0 1.7 18.9 7.9 1.0 7.7 2.8 0.4

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 4.7 1.8 0.0 4.2 1.7 0.2 4.3 1.6 0.2
Alternative 1 100.0 100.0 97.8 99.6 97.9 88.2 98.6 96.1 81.0
Alternative 2 100.0 100.0 100.0 100.0 99.9 98.7 99.6 98.5 90.7

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 6.7 3.2 0.4 5.5 2.6 0.4 4.5 1.9 0.3
Alternative 1 100.0 100.0 99.9 99.9 99.8 98.4 99.9 99.8 97.9
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9

30% censoring rate
n = 100

10% 5% 1% 10% 5% 1% 10% 5% 1%
Null 13.5 8.5 3.0 13.7 8.0 2.2 3.5 1.5 0.4

Alternative 1 72.1 54.5 21.0 66.6 47.7 15.2 37.4 20.9 3.1
Alternative 2 17.3 7.5 2.7 12.5 6.2 2.1 8.4 3.7 1.3

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 3.2 1.4 0.4 3.3 1.4 0.3 3.5 1.8 0.2
Alternative 1 100.0 99.8 98.7 99.7 98.5 90.9 98.8 96.2 82.1
Alternative 2 99.3 97.6 86.5 99.0 97.0 82.1 93.9 85.8 56.8

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 4.7 1.8 0.3 4.2 0.9 0.2 4.0 1.7 0.2
Alternative 1 100.0 100.0 99.8 99.9 99.8 99.3 99.9 99.8 98.0
Alternative 2 100.0 100.0 99.6 100.0 100.0 99.5 99.6 98.9 91.4

Note: 2000 Monte Carlo simulations, 500 bootstrap replications (nonparametric bootstrap).
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Table E.1: Box-Cox model, rejection probabilities

U ∼ Normal
n = 100

10% 5% 1%
Null 8.2 3.5 1.0

Alternative 98.2 94.6 73.3
n = 200

10% 5% 1%
Null 9.2 4.7 0.8

Alternative 100 100 100
n = 300

10% 5% 1%
Null 9.2 4.5 0.3

Alternative 100 100 100

Note: 1000 Monte Carlo simulations, 500 bootstrap replications (parametric bootstrap).
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