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Summary
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unemployment insurance. We assume a parametric model for the duration of interest

and leave the distribution of censoring unrestricted, allowing it to be correlated with

observed and unobserved characteristics. We provide a practical characterization of the

identi�ed set with moment inequalities and suggest methods for estimating this set. We

apply this approach to estimate the elasticity of unemployment exit rate with respect

to unemployment bene�t. Finally, we investigate welfare consequences of our estimates.
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1 Introduction

Duration models are a useful tool for analyzing the relationship between time spent in

some state and observed characteristics. In practice data on the duration of interest are

frequently censored. The standard approach in duration analysis is to assume that censoring

is independent of unobserved heterogeneity (existing results allow censoring to be correlated

with observed characteristics). The objective of this paper is to examine the sensitivity of

parameter estimates to this independence assumption in the context of an economic model

of optimal unemployment insurance.

Firstly, we discuss identi�cation and provide methods for estimating the mixed propor-

tional hazard (MPH) duration model when the distribution of censoring is left unrestricted.

We show that if no assumptions are made on the censoring process, the parameters of the

model are set- and not point-identi�ed. We provide a practical characterization of the iden-

ti�ed set and suggest a procedure to estimate con�dence sets for the parameters of interest

based on Kaido et al. (2019) (see Bugni et al. (2017) for alternative pro�ling procedure).

For practical reasons, our inference procedure maintains a parametric form for the baseline

hazard and the distribution of unobserved heterogeneity.

Secondly, we provide new set estimates of the elasticity of the exit rate from unem-

ployment with respect to unemployment bene�t from models that do not fully restrict the

distribution of censoring but use a parametric model for the unemployment duration. These

estimates are robust to violations of independence between censoring and unobserved het-

erogeneity. In particular, it is possible that the true parameter value does not lie in the

con�dence interval constructed under the assumption of independent censoring but it is

contained in our con�dence set (in Section 2.2 we show an example where this arises).

The elasticity of the unemployment exit rate with respect to unemployment bene�t is of

interest in the economic analysis of optimal unemployment insurance. Chetty (2008) shows

that the welfare consequences of a change in unemployment bene�t can be derived from a

small set of estimated parameters among which this elasticity plays a crucial role. Thus,
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the estimate of this elasticity can be used in conjunction with Chetty's welfare formula to

judge if the current level of unemployment bene�ts in the US is optimal. We estimate this

elasticity using a sample of unemployed persons from the Survey of Income and Program

Participation (SIPP). In our baseline speci�cation we �nd that a 10% increase in bene�t

leads to between 2.2% and 11.5% drop in unemployment exit rate.

When combined with the welfare formula, our baseline set estimates do not permit us to

put an upper bound on the size of the welfare change due to an increase in the unemployment

bene�t. However, our tightest bounds, coming from a model that restrict the dependence

between censoring and unemployment duration to half the level of dependence between

censoring and observed covariates, imply that a hike in bene�t level would have a modest

negative e�ect on GDP in the US. Overall we conclude that given the SIPP data and the

available theoretical formula one cannot credibly judge if the unemployment bene�ts in the

US are close to the optimal level. Chetty (2008) uses his point estimates to deduce that

the welfare gains from increasing unemployment bene�ts would be positive but rather small,

which implies that the bene�ts in the US are set close to the optimal level. Allowing for

correlated censoring, the empirical results are not as informative about the optimality of

unemployment bene�ts.1

Our model can be interpreted as a competing risks model with dependent risks, where

the risks are censoring and, for example, exit from unemployment. In this view there are

several alternatives to our approach. Firstly, one does not need to pose any model for ei-

ther unemployment duration nor censoring, in particular one can drop the proportionality

assumption underlying the MPH model. Peterson (1976) showed that one can obtain infor-

mative bounds on the distributions of the risks without parametric assumptions on the joint

distribution. However, these bounds are usually very wide (see Peterson (1976), Honoré and

Lleras-Muney (2006)), which makes this approach unattractive to applied researchers.

Another possible choice is to assume mixed proportional hazards for both risks (exit

1Though, these results are in line with Chetty's results when interval estimates (incorporating standard
errors) are used.
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from unemployment and censoring), see e.g. Van den Berg et al. (1994). This restores

point-identi�cation under support conditions on the explanatory variables (cf. Heckman

and Honoré (1989), Abbring and Van den Berg (2003)). However, justifying a parametric

model for the censoring variable may be problematic.

Several authors have considered dependent censoring using partial identi�cation approach

in related models or under di�erent assumptions. Partial identi�cation of a log-linear du-

ration model with dependent censoring under median restriction was analyzed by Khan

and Tamer (2009). However, they proceed with inference assuming that their condition for

point-identi�cation is satis�ed. Khan et al. (2016) investigate consequences of endogenous

censoring in a panel data model under stationarity or conditional independence restrictions.

They use a stochastic dominance test for inference and, unlike our article, do not consider

pro�led inference. Honoré and Lleras-Muney (2006) analyze an AFT competing risks model

with interdependent risks and a binary covariate. Thus, they relax the assumption on the

support of covariates required for point-identi�cation (Heckman and Honoré (1989)) but still

pose a semiparametric model for both risks. In this paper we do not require covariates to be

continuously distributed nor put any semiparametric restrictions on the distribution of one

of the risks.

The article is organized as follows. Section 2 develops the moment inequalities delineating

the identi�ed set. Section 3 discusses the inference procedure that uses these inequalities to

obtain a con�dence set for the parameters of interest. The Monte Carlo study in Section

4 veri�es that our method works in practice and assists us in picking the tuning sequence

needed for the application of the inference procedure. In Section 5 we apply the previously

developed method to build a con�dence set for the elasticity of unemployment exit rate with

respect to the unemployment bene�t and use this estimate to analyze optimal unemployment

insurance. All proofs are relegated to the online appendix (Szydlowski (2019)).
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2 Identi�cation

This section provides moment conditions that partially identify the parameters of the mixed

proportional hazard (MPH) model given the joint distribution of covariates and censored

spells. In MPH model the hazard rate for a person who has stayed unemployed for y weeks

is given by:

λ(y|Xi, Vi) = λ0(y)eX
′
iβVi (1)

where λ0(·) denotes the baseline hazard, Xi is a [K×1] vector of observed characteristics (in-

cluding a constant term) and Vi is a scalar unobserved heterogeneity term. Before proceeding

to identi�cation under endogenous censoring, it will be instructive to discuss identi�cation

of the single-spell mixed proportional hazard duration model without censoring.

The identi�cation of the MPH model in (1) has been investigated by Elbers and Ridder

(1982), Heckman and Singer (1984), Horowitz (1999) and Ridder and Woutersen (2003).

These papers di�er in the assumptions they impose on the distribution of V and the baseline

hazard as well as types of normalizations used (see Hausman and Woutersen (2014), Abbring

and Ridder (2015) for a review).

Let X ⊂ RK denote the support of Xi and Λ0 denote the integrated hazard. In this

paper we make the following assumptions:

Assumption 2.1. (a) Vi is a non-negative random variable with c.d.f. Fv and Vi ⊥ Xi,

(b) X is not contained in any proper linear subspace of RK,

(c) Λ0 : [0,∞) → [0,∞) is nondecreasing and di�erentiable almost everywhere, Λ0(0) = 0,

limy→∞ Λ0(y) =∞,

(d) E(Vi) = 1.

These assumptions correspond to Elbers and Ridder (1982). Under Assumptions 2.1(a)-
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(d) and no censoring (Λ0, β, Fv) are identi�ed.
2

2.1 Identi�cation with arbitrary censoring

In practice we do not observe a full spell Ỹi for each person but rather a censored spell:

Yi = min{Ỹi, Ci}

where Ci is the censoring variable. All the existing approaches assume independence between

censoring Ci and unobserved heterogeneity Vi. However, it is often hard to justify this

assumption. We provide several examples where this condition fails.3

Example 1 (survey attrition): Consider the 1996 panel of the Survey of Income and

Program Participation (SIPP), which is a part of our estimation sample. As reported by

Slud and Bailey (2006) 30% of individuals in the initial sample left the survey by the �nal

wave of the interviews. Moreover, Bailey (2004), Table 3.2, shows that people leaving the

survey are systematically di�erent with respect to observed characteristics than responders.

It is likely that unemployed leaving the survey di�er from the remaining unemployed also

with respect to unobserved characteristics. For example, individuals may fail to complete

the survey because of alcohol or drug problems. These problems will also a�ect their chances

to �nd a job. In other words, the same unobserved characteristics will a�ect attrition and

unemployment duration, which violates independence between Ci and Vi.

Example 2 (administrative unemployment data): Independence between censoring

and unobserved characteristics is questionable in the studies of unemployment duration based

on administrative data (see e.g Meyer (1990)). With this type of data, we observe the

unemployed person only as long as she receives bene�ts. Therefore, the unemployed who use

the full length of bene�ts are no longer observed and their unemployment spells are censored.

2The same identi�cation argument holds also for a model with completely random censoring and censoring
correlated with observed covariates.

3Further examples are given in Szydlowski (2019).
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Those who do not exhaust their bene�ts may also be censored if they do not accept a proposed

job o�er or refuse to participate in a reemployment services program. Moreover, in the US

an unemployed person can often extend her bene�ts beyond the standard period at the cost

of subjecting herself to stricter job search requirements, e.g. contacting a speci�c number of

employers every week, reporting search e�ort etc. The extension can be canceled at any time

if the person fails to satisfy these requirements (see e.g. IDES (2017)). In all these cases one

can expect that the observed bene�t period would be a�ected by unobserved characteristics

like motivation to �nd a job or search skills. This would violate the assumption that censoring

is independent of unobserved characteristics.4

These examples show that independent censoring implicitly entails strong economic as-

sumptions. Thus, in this section we relax the assumption of independence between censoring

and unobserved heterogeneity in the mixed proportional hazard model. Let Di = 1{Ỹi ≤ Ci}

indicate observations which are not censored.

Although our identi�cation results carry through to the general MPH model where Λ0 and

Fv are treated nonparametrically, for the ease of exposition, in what follows we will assume

that the distribution of unobserved heterogeneity and the baseline hazard are known up to

�nitely dimensional parameters, i.e. Fv(·) = Fv(·; γ), γ ∈ Rdγ and Λ0(·) = Λ(·;α), α ∈ Rdα .

Denote θ = (α, β, γ) and let Θ be a subset of Rdθ , dθ = dα +dγ +K. De�ne F x
vc(v, c|x) to

be the joint cumulative distribution function of (V,C) conditional on X = x. Let F = {F x
vc :

E[V ] = 1, Fv(·) = Fv(·; γ), γ ∈ Rdγ} (note that we do not assume that the joint distribution

is continuous to allow the case of �xed censoring). Let p(y, d, x) = p(Y = y,D = d|X = x)

where p is the true density generating the data and pθ(y, d, x;F x
vc) denotes the respective

density generated from the censored parametric MPH model with dependence between V , C

and X governed by F x
cv. The identi�ed set for the true value θtrue is the set of all θ's for which

there exists a cumulative distribution function F x
cv ∈ F such that the model probabilities are

4This will not be a problem if the researcher is willing to censor all the spells at 26 weeks or lower. The
existing tools will work well in such case.
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consistent with the true probabilities, i.e.

ΘI = {θ : p(y, d, x) = pθ(y, d, x;F x
vc) for some F x

vc ∈ F and all (y, d, x)}.

In other words, we allow any form of statistical dependence between censoring C and unem-

ployment duration Ỹ as long as the marginal distribution of Ỹ follows our MPH model.

Alternatively, the identi�ed set can be described as the set of maximizers of the log-

likelihood:

ΘI = arg max
θ∈Θ

sup
Fxvc∈F

E[log pθ(y, d, x;F x
vc)],

where the expectation E is taken with respect to the true probability p. The latter charac-

terization falls in the class of models analyzed by Chen et al. (2011), who suggest a sieve

likelihood ratio test for doing inference. However, implementing their procedure in our con-

text is di�cult since it requires approximating the CDF F x
vc by sieves. This function has

K + 2 arguments, thus the number of sieve coe�cients will be large and the resulting esti-

mates may have a large bias in �nite samples. Instead, we aim at providing an alternative

characterization of the identi�ed set that leads to a simpler inference procedure.

Let

S(y|x) = P (Yi > y|X = x) and S̃(y|x) = P (Ỹi > y|X = x)

denote the survival functions for observed and latent spells and de�ne:

Su(y|x) = 1− E[Di1{Yi ≤ y}|X = x].

8



Then, we have Yi ≤ Ỹi ≤ DiYi + (1−Di)∞, which implies:5

S(y|x) ≤ S̃(y|x) ≤ Su(y|x). (2)

These inequalities provide a starting point for deriving the moment inequalities which char-

acterize the identi�ed set. Let

Lv(s; γ) =

∫ ∞
0

e−svdFv(v; γ)

denote the Laplace transform of the distribution Fv. We have:

S̃(y|x) = Lv(Λ(y;αtrue)e
x′βtrue ; γtrue). (3)

which, together with (2), implies that ΘI is contained in a set de�ned by a collection of

moment inequalities. Additionally, note that Su(y|x)− S̃(y|x) = P (Yi ≤ y,Di = 0|X = x),

which implies that the right-hand side of this expression has to be non-decreasing in y.

Proposition 1 shows that adding this requirement to inequalities in (2) is enough to provide

sharp characterization of the identi�ed set in our model.6

Proposition 1. Let Θ0 be the set of θ = (α, β, γ)'s satisfying:

Lv(Λ(y;α)ex
′β; γ)− S(y|x) ≥ 0; (P1)

Su(y|x)− Lv(Λ(y;α)ex
′β; γ) ≥ 0; (P2)

Su(y1|x)− Lv(Λ(y1;α)ex
′β; γ) ≥ Su(y2|x)− Lv(Λ(y2;α)ex

′β; γ); (M)

∀y ∈ [0,∞), x ∈ X ; ∀y1, y2 ∈ [0,∞), y1 ≥ y2, x ∈ X

and suppose Assumption 2.1 holds. Then, if P (Ci ≤ y|Di = 0, Xi = x) is continuous and

5We assume 0×∞ = 0 here.
6I am grateful to an anonymous referee for suggesting these additional inequalities and the argument

leading to this sharpness result.
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strictly increasing for y ∈ (0, Cmax), Cmax > 0:

ΘI = Θ0

Note that the moment inequalities (P1)-(P2) correspond to the bounds in Peterson (1976).

His bounds are nonparametric - he does not pose a parametric model for either of the

risks (employment and censoring). In that model the extreme joint distributions of (Ỹ , C)

generating the bounds automatically satisfy condition (M). With a parametric model that

does not have to be the case anymore as we are restricting the marginal distribution of Ỹ to

the MPH class, which may make Peterson bounds not sharp. Thus, additional inequalities

in (M) are needed to guarantee sharpness. When evaluated at θtrue the left hand side of (M)

becomes P (Ỹ ≤ y1, D = 0|X = x), i.e. the distribution of unobserved part of Ỹ , so this

inequality excludes joint distributions of (Ỹ , C) which are consistent with MPH model for

Ỹ but at the cost of violating monotonicity in the unobserved part. Proof of Proposition 1

shows that this is enough to guarantee sharpness.

It is natural to ask under which conditions the identi�ed set shrinks to a point. Propo-

sition 2 provides a set of su�cient conditions.

Proposition 2. If there exist ε > 0 such that the set

XID = {x ∈ X : P (Ci ≤ ε,Di = 0|Xi = x) = 0}

with P (x ∈ XID) > 0 satis�es Assumption 2.1(b) and Λ(·;αtrue) is an analytic function on

(0,∞), then we have Θ0 = {θtrue}.

Proposition 2 basically requires that short durations are never censored for some values

of covariates, for example, short-term unemployed with large families never drop out of the

survey before the end of their spell. In particular, point identi�cation obtains in the case of

�xed censoring and when censoring depends only on the observed covariates. The require-
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ment for the integrated baseline hazard function to be analytic is satis�ed by the Weibull

speci�cation used in our application or, for example, by any polynomial approximation.7

Note that Proposition 1 proves sharpness when censoring is continuously distributed with

positive density everywhere on (0, Cmax) (a su�cient condition for condition in Proposition

1 under our MPH model). When C has a discrete distribution with a �nite number of points

of support, Proposition 2 shows that the parameters are point-identi�ed for most models of

interest and, thus, naturally the set is sharp as well.

For given y and x the inequalities (P1)-(P2) in Proposition 1 can be rewritten as:

S(y|x) ≤ Lv(Λ(y;α)ex
′β; γ) ≤ Su(y|x).

We can see that the identi�ed set Θ0 is an intersection of the areas between two level sets

of the function Lv(Λ(y;α)ex
′β; γ) for di�erent values of y. This function is nonlinear, so

the areas between the level sets will not be convex and convexity of Θ0 is not guaranteed

(additional inequalities in (M) do not help here).

2.2 Shape of the identi�ed set

In this section we analyze an example MPH model with dependent censoring to get some

insight about the shape of the identi�ed set and potential consequences of assuming inde-

pendent censoring (here, as in the rest of the article, this means censoring independent of

unobserved heterogeneity, thus allowing for covariate-dependent censoring). Moreover, our

inference procedure will require discretizing the support of X.8 Since the moment inequali-

ties are indexed by values of X, a reduction in the number of points of support of X will lead

7The analyticity assumption can be dropped if one is only interested in identifying the baseline hazard
on [0, ε]. Also, even if we cannot fully identify the baseline hazard, the coe�cient β can be identi�ed from
knowledge of the survival function around zero.

8We also discretize the evaluation points for y but this is of less concern as the main cost of a �ner grid
for y is computational. Thus, if one is concerned about the loss of identifying power due to a �nite number
of evaluation points, one could introduce more points at the cost of longer computation. A �ner grid for X
means both longer computing times and less precision in estimating conditional CDFs.

11



to a decrease in the number of moment conditions and, in general, will increase the identi�ed

set. Thus, we also take a chance here to investigate how the coarseness of discretization will

a�ect the size of Θ0.

We investigate the following MPH model:

α log Ỹ = −Xβ − log V + logU

α logC = c+ log V

where V, U have the unit exponential distribution (which implies γ = 1) and are mutually

independent. We set α = 1.5, β = −0.5, c = 2.5 and impose an upper bound on the observed

durations equal to 5. This guarantees a censoring rate around 22%. The model implies that

the lower the unobserved �ability� (V ) the longer the unemployment spell and the more likely

the spell will be censored, which is in line with the intuition that people with low ability or

motivation will exit the unemployment records sooner than highly motivated individuals.

In this setup we can derive analytic expressions for the probabilities in (P1)-(M) (see

Section E in Szydlowski (2019)). To check how the size of the identi�ed set varies with the

coarseness of the discretization of X we consider x = −1,−1 + 2/M,−1 + 4/M, . . . , 1− 2/M

for M = 2, 10, 60. Figure 1 portrays the identi�ed set. In order to compare our sets with

estimates obtained under assumption of independent censoring, we generate 1000 arti�cial

samples of size 4000 (approx. the sample size in our application) from the model and estimate

the Weibull-gamma model under this assumption for each of these samples. We report the

median of the estimates together with the median con�dence interval, where the latter is

constructed using the median of the standard errors across the simulated samples.

In our numerical examples the identi�ed set Θ0 turns out to be convex despite the fact that

it is an intersection of non-convex regions (the same holds in other examples not reported in

this article). Figure 1 also shows that the estimates obtained under the erroneous assumption

of independent censoring may be far from the true value which is, naturally, always included
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in our identi�ed set.

The identi�ed set for β shrinks considerably when the number of x values goes from 2

to 10 but we see only minor tightening of the set when we increase M from 10 to 60. These

observations suggest that discretization of covariates in our inference procedure should not

lead to signi�cant widening of the con�dence set as long as the number of points of support is

not extremely low. In our application x is multivariate and we discretize x so that x′β takes

around 30-60 values. The above results suggest that we should not lose a lot of identifying

power with this discretization.

3 Inference

This part shows how to obtain con�dence regions for the identi�ed set de�ned by the moment

inequalities (P1)-(M). In our model we are faced with in�nitely many moment inequalities

indexed by two continuous parameters y and x. One way to proceed is to take the supremum

over these parameters. In practice this would require the dimension of x to be low and may

involve a signi�cant computational burden questioning the applicability of this approach

(e.g. when S(y|x) and Su(y|x) are estimated nonparametrically). Instead, we simplify the

problem by assuming that the support of the covariate vector X is �nite. Let M denote the

cardinality of X .

Assumption 3.1. X contains �nitely many values x1, x2, . . . , xM and P (X = xm) ≥ δ > 0

for all m = 1, 2, . . . ,M, 1 < M <∞ and for some δ > 0.

If some of the covariates are continuously distributed, one can discretize them. The

resulting con�dence region will most likely di�er from the con�dence region without imposing

discrete support. However, if the discretization is relatively �ne, the two regions should be

close to each other, as shown in the previous section.

In addition to assuming discrete support for X we will also consider only a �nite number

of y values: y1, y2, . . . , yS (we assume y1 ≤ y2 ≤ . . . yS). In principle discretization of y
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may lead to loss of identifying power, however in practice the observations on Y are often

recorded on a discrete scale, e.g. unemployment durations are recorded in weeks, which

naturally restricts the number of relevant y values. In this case one can check if the moment

inequalities are satis�ed for the points of support of Y recorded in the data.

3.1 KMS con�dence sets

With discrete set of values for x and y our model turns into an unconditional moment

inequality model.9 In practice one is interested only in a component of the parameter vector

θ. In our empirical application the object of interest is a single element of the β vector.

Thus, for inference we focus on obtaining a marginal con�dence set for a subvector θ1 of θ.
10

We employ the bootstrap calibrated projection procedure developed recently by Kaido

et al. (2019) (KMS henceforth). Index the inequalities by j = 1, 2, . . . , J where J = 2MS +

M(S − 1). Note that under Assumption 3.1 and discrete y's the inequalities (P1)-(M) are

equivalent to:

E[µj(Yi, Xi, θ)] ≤ 0

where:

µj(Yi, Xi, θ) =



1{Yi > ys, Xi = xm} − Lv(Λ(ys;α)ex
′
mβ ; γ)1{Xi = xm} for j = (m− 1)S + s

Lv(Λ(ys;α)ex
′
mβ ; γ)1{Xi = xm} − 1 +Di1{Yi ≤ ys, Xi = xm} for j = MS + (m− 1)S + s

[Lv(Λ(ys̃+1;α)ex
′
mβ ; γ)− Lv(Λ(ys̃;α)ex

′
mβ ; γ)]1{Xi = xm}

+Di1{Yi ≤ ys̃+1, Xi = xm} −Di1{Yi ≤ ys̃, Xi = xm} for j = 2MS + (m− 1)(S − 1) + s̃

with m = 1, . . . ,M ; s = 1, . . . , S; s̃ = 1, . . . , S − 1.

9In principle, one could apply more elaborate method of passing from conditional to unconditional in-
equalities like the one in Andrews and Shi (2013). However, this would inevitably complicate, already
computation-heavy, calculation of our con�dence sets.

10Alternatively, one could build a con�dence set for the whole vector θ and project it on the component of
interest, θ1. However, this approach would produce highly conservative con�dence bounds on θ1, as argued
by e.g. Kaido et al. (2019).
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Let µ̄j(θ) = 1/n
∑n

i=1 µj(Yi, Xi, θ) and σ̂j(θ) denote the estimated standard deviation of

µ̄j(θ). The KMS procedure calculates the con�dence set for θ1 as:

CSn ≡
[

inf
θ∈Θ

θ1 s.t.
√
n
µ̄j(θ)

σ̂j(θ)
≤ ĉ(θ) ∀j, sup

θ∈Θ
θ1 s.t.

√
n
µ̄j(θ)

σ̂j(θ)
≤ ĉ(θ) ∀j

]
(4)

where ĉ(θ) is a critical value calibrated through a bootstrap procedure that iterates over

linear programs (see Kaido et al. (2019) for details). The procedure uses GMS of Andrews

and Soares (2010) which requires a choice of a tuning sequence κn satisfying:

Assumption 3.2. κn →∞, κn/
√
n→ 0.

Denote Lv(Λ(ys;α)ex
′
mβ; γ) by Lm,s(θ). In order to show validity of the KMS procedure

we introduce the following assumptions:

Assumption 3.3. (a) Θ is a compact hyprrectangle with nonempty interior.

(b) {Yi, Di, Xi}ni=1 is an i.i.d. sample.

(c) For all ys ∈ {y1, . . . , yS} and xm ∈ X the probabilities P (Di = 1|Xi = xm), P (Yi >

ys, X = xm) and E[Di1{ys ≤ Yi ≤ ys+1, Xi = xm}] are bounded away from 0 and 1.

(d) Lm,s(θ) is di�erentiable with respect to θ and the elements of the Hessian matrix O2
θLm,s(θ)

are bounded above for all θ ∈ Θ, m = 1, . . . ,M and s = 1, . . . , S.

Convexity of Θ is needed since KMS procedure uses mean value expansions of the stan-

dardized moments E[µj(Yi, Xi, θ)]/σj(θ). Assumption 3.3(c) is needed to guarantee that

the variance of moment conditions, σ2
j (θ), is bounded away from zero. This condition also

implies that the moment conditions cannot be perfectly correlated.

Assumptions 3.3(a) and 3.3(d) are su�cient conditions for the derivative of µj to be

Lipschitz continuous. Note that for the Weibull baseline hazard Λ(y, α) = yα, α > 0 the

second derivative d2Lm(θ,y)
dα2 may not be bounded around y1 = 0. Therefore, in the Weibull

model one should choose y1 to be bounded away from zero. However, this is not worrisome
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in practice because we rarely observe durations very close to zero. In our application the

unemployment duration is given in weeks and we do not observe unemployment spells shorter

than one week.

Partition the parameter space Θ = Θ1 ×Θ−1 and let:

Θ0,1 = {θ1 ∈ Θ1 : ∃θ−1 ∈ Θ−1 such that (θ1, θ−1) ∈ Θ0}.

The following proposition describes the asymptotic size of the KMS procedure:

Proposition 3. Let 0 ≤ τ ≤ 1/2. Then under Assumptions 2.1-3.3 we have:

lim inf
n→∞

inf
θ1∈Θ0,1

P (θ1 ∈ CSn) ≥ 1− τ.

where CSn is de�ned in (4).

The proposition shows that the KMS con�dence set has correct coverage. This proposi-

tion is a consequence of Theorem 4.1 in Kaido et al. (2019). In Section B.3 of Szydlowski

(2019) we verify that our assumptions are su�cient to apply their result. Theorem 3 can

be strengthened to hold uniformly over all potential null distributions under additional as-

sumptions as in Kaido et al. (2019).

4 Monte Carlo simulations

We investigate the performance of our testing procedure using the following designs. The

unemployment duration is generated from the MPH model:

α log Ỹi = −Xiβ − log Vi + logUi

where α = 1.5, β = −0.5, Vi, Ui have the unit exponential distribution (which implies γ = 1)

and are mutually independent as well as independent ofX. The censoring process is described
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by:

α logCi = c1 −Xiβ (design 1)

α logCi = c2 + log Vi (design 2)

α logCi = c3 −Xiβ + log Vi (design 3)

where c1 = 1.3, c2 = c3 = 2.5. This guarantees a censoring rate around 22%. The covariate

Xi is drawn from a discrete uniform distribution on X = {−1,−0.8,−0.6, . . . , 0.8}.

In the �rst design Ci depends only on Xi, hence the parameter vector (α, β, γ) is point

identi�ed. The second design is the one described in Section 2.2. The parameters are

partially-identi�ed in this setup, which is also the case in the third design. The slope param-

eter β is the object of interest. We use a grid ys = 0.5, 1, 1.5, . . . , 5 for support of Yi. We set

κn =
√
n/(κ log(n)) and consider κ = 0.5, 1, 1.5. We consider di�erent values of β to check

if our test controls size correctly (β = −0.5, β = −0.366 and β = −0.339) and to examine

power properties of our tests (β = 0). The results are reported in Table 1.

The simulations con�rm the result in Proposition 3. Coverage probabilities are above

nominal values for β's in the identi�ed set. The conservativeness of the upper approximation

to the critical value decreases with sample size towards the nominal values when sample

increases from n = 4000 to n = 8000.

For the upper end of our con�dence set (β = −0.366 or β = −0.339) we get coverage

closest to the nominal values when κ = 0.5 with overcoverage for higher values of κ. Based

on these results we choose κ = 0.5 for the empirical application. Additionally, with n = 4000

the test at the 90% level includes β = 0, which is outside the identi�ed set, in at most 5%

of the cases, which shows that the test has good power.

We note that our test is quite conservative in the point-identi�ed design and design 2.

Thus, our approach comes at a cost compared to the standard approach when censoring is in

fact independent. However, compared to the cost of misspecifying the censoring mechanism
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Table 1: Results of Monte Carlo simulations, M = 10

n = 4000 n = 8000
coverage 1 - power coverage 1 - power

interior boundary interior boundary

design 1 (point-identi�ed)
β = −0.5 β = −0.5 β = 0 β = −0.5 β = −0.5 β = 0
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 0.95 0.98 0.95 0.98 0.02 0.03 0.94 0.98 0.94 0.98 0.02 0.01
κ = 1 0.96 0.98 0.96 0.98 0.02 0.04 0.95 0.98 0.95 0.98 0.02 0.00
κ = 1.5 0.96 0.99 0.96 0.99 0.02 0.04 0.96 0.99 0.96 0.99 0.01 0.00

design 2 (partially-identi�ed)
β = −0.5 β = −0.366 β = 0 β = −0.5 β = −0.366 β = 0
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 1.00 1.00 0.98 1.00 0.26 0.47 1.00 1.00 0.97 0.99 0.02 0.06
κ = 1 1.00 1.00 0.99 1.00 0.30 0.52 1.00 1.00 0.98 0.99 0.02 0.08
κ = 1.5 1.00 1.00 0.99 1.00 0.33 0.54 1.00 1.00 0.98 0.99 0.03 0.10

design 3 (partially-identi�ed)
β = −0.5 β = −0.339 β = 0 β = −0.5 β = −0.339 β = 0
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 1.00 1.00 0.95 0.98 0.21 0.45 1.00 1.00 0.91 0.96 0.01 0.04
κ = 1 1.00 1.00 0.96 0.99 0.25 0.41 1.00 1.00 0.93 0.97 0.01 0.05
κ = 1.5 1.00 1.00 0.96 0.98 0.27 0.48 1.00 1.00 0.93 0.97 0.01 0.05

Note: 2000 Monte Carlo simulations, 500 bootstrap replications. The column �1 - power� gives the probability
that the value outside the identi�ed set is included in the con�dence set. Boundary value is the value on the
boundary of the marginal identi�ed set (calculated numerically).

evidenced in Section 2.2 it seems worth incurring this power cost and using our approach

instead of the standard one.

5 Optimal unemployment insurance

We re-investigate the question of optimal unemployment insurance using our novel approach

which relaxes the assumption of independent censoring. As shown by Chetty (2008), welfare

consequences of a change in unemployment bene�ts can be derived from a small set of

estimated parameters. The crucial parameter in his welfare formula is the elasticity of

unemployment exit rate with respect to unemployment bene�t. All the previous studies

(see e.g. Meyer (1990), Chetty (2008)) estimated this parameter assuming that censoring

is independent of unobserved characteristics. Our goal is to �nd out what can be learned

about this elasticity and, as a result, about optimality of unemployment bene�ts in the US
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Table 2: Summary statistics

mean std. err. min max

unemployment duration in weeks 21.3 21.9 1 171
censored 0.22 . . .
bene�t level in $ 163 27 102 234
pre-unemployment annual wage in $ 21 150 13 797 10 169 690
average unemployment rate 5.9 0.9 3.3 9.1
age 36.8 11.1 18.0 64.0
married 0.60 . . .

if one disposes of this assumption.

5.1 Data

We use a sample from SIPP 1985-2000 similar to Chetty (2008). The only di�erence is that we

drop second and further unemployment spells for people who entered unemployment multiple

times in our sample, which reduced the number of observations from 4529 to 3986.11 This

way we obtain an i.i.d. sample of single spells. The data consist of prime-aged males who

receive bene�ts, search for a job, have at least 3 months of work history and are not on

temporary layo� (see Appendix B in Chetty (2008) for a detailed description of the sample).

Our explanatory variables are: logarithm of unemployment bene�t level, annual wage be-

fore unemployment, average state unemployment rate in years 1985-2000, age and a dummy

indicating if the individual is married. Annual wage and average state unemployment rate

are meant to control for observed productivity and local labor market conditions' di�erences,

respectively. As in Chetty (2008), we let the unemployment bene�t level equal the average

state unemployment bene�t level in the year of entry into the unemployment pool. Table

2 reports the summary statistics for our sample. An unemployed person spent around 21

weeks in unemployment on average and the longest unemployment spell goes over 2 years.

The censoring rate equals 22%.

There are large di�erences in observed characteristics between censored and uncensored

11Chetty (2008) estimates a Cox model without unobserved heterogeneity component using all spells. He
treats subsequent spells for the same person as separate observations.
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observations. Individuals that are subject to censoring had earned $1700 less before they

became unemployed, they are older (average age of 38.3) and less likely to be married (55%

are married versus 60% in the whole sample). Thus, we should also not expect these two

groups to be homogeneous when it comes to unobserved characteristics.

Our set of covariates is highly restricted when compared to Chetty (2008). He includes

many other controls, in particular, a full set of year, occupation, industry and state dummies

as well as high school completion dummy. However, as shown in Szydlowski (2019), Section

C.1, one obtains almost identical estimates of the elasticity of exit rate from unemployment

using our restricted set of covariates. This is not surprising given that almost none of the

year, industry and occupation dummy variables included in Chetty (2008) are statistically

signi�cant. Only state dummies appear to be signi�cant. This is because they control

for local labor market conditions, which instead can also be captured by the average state

unemployment rate. Adding other variables from his model (education, total household

wealth, �seam e�ect� dummy) also does not signi�cantly change the results (cf. Section C.1

in Szydlowski (2019)), which suggests that our set of covariates provides su�cient control of

observed productivity di�erences.

We include a small set of covariates because our estimation of moment conditions involves

estimating the conditional survival function S(y|x). With too many covariates, the number

of observations available to estimate S(y|x) for each x will be small and the resulting estimate

of poor quality, which would create di�culties for our estimation method. Thus, we do not

include these remaining covariates in our model.
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5.2 Results

In our �rst speci�cation we assume that the baseline hazard has the Weibull form and that

unobserved heterogeneity is distributed gamma with mean one, which implies:12

Lv(Λ(y;α)ex
′β; γ) =

1

(1 + γyαex′β)
1
γ

.

Next we consider a speci�cation with a piecewise constant hazard with ten steps: Λ(y, α) =∑10
l=1 αl1{y ≥ cl}, αl > 0, where cl = 1, 6, . . . , 46. 13

We choose ys = 5, 10, . . . , 50 (in Section C.5 of Szydlowski (2019) we consider alternative

choices of support for y) and, based on MC simulations, pick κ = 0.5 for the bootstrap

statistic. We employ the following discretization procedure. If the desired number of points

in the support is greater than two, we divide the support of the covariates according to the

quantiles and assign a value equal to the mean within each quantile group14, e.g. if we want

to have 4 points of support for log UI bene�t, we divide the support by quartiles and for

each quartile calculate the mean UI bene�t within the quartile. For binary support, we use

dummy variables - below/above median.

12This speci�cation satis�es Assumption 3.3(d) if γ > 0 and α, β are bounded, subject to the caveat
mentioned in the discussion after the statement of Assumption 3.3.

13Our estimates assume that the data generating process is obtained using these speci�cations. Testing
for misspeci�cation of our moment inequality model is beyond the scope of this paper.

14We consider alternative choice of values within quantiles in Szydlowski (2019), Section C.4.
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Table 3 gives the results of our empirical study. For comparison we also report interval

estimates from the model assuming independent censoring.15 In the baseline speci�cation

(column (2)) we include log UI bene�t, log annual wage and average unemployment rate as

covariates. As in Chetty (2008) we also censor durations exceeding 50. This increases the

censoring rate to 26%. Next we add the demographic controls to the model (column (1)).

In Section C.3 of Szydlowski (2019) we compare our results to the previous results available

from Meyer (1990) and Chetty (2008).

All our con�dence sets with no restrictions on the censoring mechanism (columns (1),(2),(5))

are really wide and contain the interval estimate under independent censoring, thus suggest

that we cannot rule out that censoring is independent of unobserved heterogeneity. On the

other hand, our results are robust to this assumption. Though we obtain a larger set, we are

more con�dent that the true value lies within this set.

Additionally, the bounds include a range of positive elasticities. Thus, without imposing

independent censoring assumption we are not able to say whether the bene�ts would have

positive or negative impact on the exit rate from unemployment. Positive estimates ought not

to be viewed as an odd anomaly. For example, when Chetty (2008) estimates the elasticity

of unemployment exit rate with respect to severance pay (Table 4, pp. 214 in his paper), as

a by-product he also obtains an estimate of elasticity with respect to the UI bene�t. The

estimated elasticity equals 0.292 and is statistically di�erent from zero (see Section C.2 in

Szydlowski (2019)).

Certainly, one can think of an economic mechanism that would lead to positive e�ect of

unemployment bene�t on chances of �nding a job. If the unemployed are liquidity constrained

and job search is costly, then they may pick low (or no) search e�ort because of insu�cient

funds. In this case, a higher UI bene�t may relax their liquidity constraint and induce more

search. If this e�ect dominates the moral hazard e�ect (i.e. reduced incentive to search due

15These estimates use discretized variables, thus the di�erences between the �rst and the last row of Table
3 can be associated with di�erent identi�cation strategies and not dicretization. That discretization plays
only a minor role for our results is also con�rmed for the Cox model under independent censoring (see
Szydlowski (2019)).
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to the conditional nature of unemployment bene�ts), the resulting change in the probability

of �nding a job will be positive. We discuss the theoretical background for positive elasticity

in Section D in Szydlowski (2019).

Comparing columns (2) and (5) we notice that the model with step hazard delivers smaller

con�dence interval than the Weibull model. Still both intervals are very wide. Thus, we

conclude that in our application our model with unrestricted censoring is not very informative

and one has to impose further restrictions in order to narrow the bounds. We do this by

applying c-dependence of Masten and Poirier (2018), which naturally falls into our inference

procedure.

5.2.1 Con�dence sets under c-dependence

We restrict statistical dependence between censoring and unemployment duration by impos-

ing:

sup
ys

|P (D = 1|Ỹ = ys, X = xm)− P (D = 1|X = xm)| ≤ c

sup
ys

|P (D = 1|C = ys, X = xm)− P (D = 1|X = xm)| ≤ c

where c is calibrated as suggested in Masten and Poirier (2018) by taking sample equivalent

of:

c = sup
k=1,2,...,K

sup
x−km

sup
xkm

|P (D = 1|X = (xkm, x
−k
m ))− P (D = 1|X−k = x−km )|

where xm = (xkm, x
−k
m ), i.e. we are looking at maximal change in probability of duration being

observed induced by removing the k-th covariate. Loosely speaking we proxy the dependence

between censoring and unemployment duration by the dependence between censoring and

observed covariates.

By Proposition 2 in Masten and Poirier (2018) such c-dependence restriction implies
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(sharp) moment inequalities on the conditional CDF P (Ỹi ≤ ys|X = xm) = 1−Lv(Λ(ys;α)ex
′
mβ; γ).

These inequalities can be naturally incorporated in our inference procedure.

Columns (3), (4) and (6) in Table 3 show that restricting dependence in such a way

signi�cantly narrows the estimated bounds. We can rule out positive elasticities in the

Weibull model (column (4)) as well as in the step hazard model (column (6)). For example,

results from column (6), which we take as our baseline estimates, imply that a 10% increase

in the bene�t would lead to between 2.2% and 11.5% decrease in the hazard rate.

5.3 Policy implications

In this section we ask what can be learned about optimality of unemployment insurance in

the US given our set estimates. First, we endeavor to apply the welfare formula developed

by Chetty (2008).

Let W denote social welfare and b the bene�t level. Using a general theoretical model

Chetty (2008) �nds that the money-metric welfare gain at the bene�t level equaling to half

of the weekly wage can be written as:

dW

db
= K1

[
f(ε1, ε2)

1− f(ε1, ε2)
+
ε1

K2

]
(5)

where:

f(ε1, ε2) =
eε2 − 1

eε1 − 1
K3,

ε1 is the elasticity of the unemployment exit rate with respect to the bene�t level and ε2 is

the percentage change in unemployment exit rate associated with receipt of severance pay.

K1, K2, K3 are positive constants that are calibrated from the macro data.

The main idea of Chetty's approach is that ε1 captures two e�ects. On one hand, addi-

tional cash in form of UI bene�ts creates moral hazard - it reduces the incentive to search

for a job. On the other hand, it induces a liquidity e�ect - if the unemployed are liquidity
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constrained, then receipt of UI bene�ts relaxes their �nancial constraint and allows them to

achieve unconstrained optimum. Chetty's model implies that both the liquidity e�ect itself

as well as the sum of the liquidity e�ect and the moral hazard e�ect are negative, i.e. the

above welfare formula is valid only when:16

0 ≤ f(ε1, ε2) ≤ 1. (6)

With the above welfare formula at hand we can now assess what the policy implications

of our set estimate of ε1 are. The welfare gain gives an average weekly rise in money-metric

utility resulting from a 1$ increase of the bene�t at the bene�t level equal to 50% of the

average wage (the average replacement rate for our sample is close to 50%, see Chetty (2008)

Table 1). We aggregate this over a year and over the whole population to obtain a total

yearly gain and translate it into the percent of GDP. We �x the value of ε2 at -0.233, the

point estimate obtained by Chetty (2008), and use the same calibration for K1, K2 and K3

as in his paper.

Figure 2 portrays the results. We use our baseline estimates from column (6) of Table

3 since estimates without imposing c-dependence are largely uninformative (note that using

bounds from the Weibull model in column (4) would lead to similar conclusions). The black

curve plots the welfare change as a function of the unemployment exit rate elasticity. The

dashed lines correspond to our con�dence sets. Unfortunately, condition (6) is not satis�ed

for all values of ε1 in our con�dence sets17, thus in the �gure we only include a relevant

region where condition (6) holds.

Even in this restricted region we cannot put any upper bound on the welfare e�ect when

we use our baseline estimates (red dashed line). The welfare gain diverges to in�nity when

ε1 approaches the point for which f(ε1, ε2) = 1. Thus, we can only conclude that the welfare

16See formulas (6),(7),(11) in Chetty (2008). Our f(ε1,ε2)
1−f(ε1,ε2) corresponds to −∂s0/∂A0

∂s0/∂w0
in formula (11) in

Chetty (2008). Then the restriction on f follows from (6) and (7) in his article.
17The welfare formula in (5) is discontinuous at ε1 for which f(ε1, ε2) = 1 and approaches −∞ to the right

of this point.
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change from increasing the bene�ts is in the range [−0.15,∞]% GDP. This only implies that

a jump in the level of bene�ts would not lead to any major drop in output, but we cannot

judge if such jump is in fact desirable or if currently bene�ts are close to the optimal level.

Chetty (2008) uses his point estimates to conclude that the welfare gain from increasing

the bene�t level would be around 0.04%, which means that in the 1990s the unemployment

bene�ts in the US were set close to the optimal level. We argue that if one is concerned

about dependent censoring and wants to stay robust to the assumptions on the censoring

distribution, then such sharp conclusions cannot be drawn and a wide range of possible

welfare e�ects are consistent with the model and the data.18

Since the baseline estimates do not produce decisive welfare implications, we consider

estimates under more restrictive assumptions. Namely, we restrict the c-dependence param-

eter to half of its original value. Loosely speaking we assume that there is half as much

statistical dependence between censoring and unemployment duration as there is between

censoring and observed covariates. This produces estimates of the bene�t elasticity between

-1.15 and -0.89 (column (7) in Table 3) which translates into welfare e�ect in the range of

[-0.15, -0.05]% GDP (dashed blue line in Figure 2). Hence, under half c-dependence a bene�t

hike would have modest negative e�ect on the output in the US.

We conclude that given the available data and the existing welfare formula one cannot

credibly judge if the unemployment bene�ts in the US are close to the optimal level unless one

is willing to make strong assumptions about the amount of dependence between censoring

and unemployment duration. First, the estimates of the elasticity of unemployment exit rate

with respect to UI bene�t vary in a wide range both with our partial identi�cation approach

and with standard independent censoring approach. Secondly, the available welfare formula

is not applicable to the whole range of plausible estimates so it is not known what their

welfare implications are.

18We can use delta method to calculate the con�dence interval for the welfare gain in Chetty (2008) (taking
into account that both ε1 and ε2 are estimated from the data). The resulting interval is [-0.57, 1.03]% GDP.
Thus, also his point estimate comes with a lot of estimation uncertainty.
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6 Conclusion

We argue that the standard assumption in duration modeling that censoring is independent

of the unobserved characteristics imposes strong economic assumptions on the underlying

behavior that fail in many applications of interest. We show how to proceed with inference

without this assumption. Our model does not parametrically restrict the distribution of

censoring and partially identi�es the parameters of interest.

We applied our model to estimate the elasticity of the unemployment exit rate with

respect to the unemployment bene�t. The estimates might be used to draw policy conclusions

about the optimal level of bene�ts in the US. However, we found that given the available data

the welfare formula obtained in the literature does not allow to draw any substantive policy

conclusions unless one is ready to make strong (but still partially identifying) assumptions

about dependence between censoring and unemployment duration. This calls for the need to

obtain alternative formulas and richer datasets to sharpen the discourse about unemployment

insurance policies.

References

Abbring, J. H. and Ridder, G. (2015). Regular variation and the identi�cation of generalized

accelerated failure-time models. Econometric Theory, 31(6):1229�1248.

Abbring, J. H. and Van den Berg, G. J. (2003). The identi�ability of the mixed propor-

tional hazards competing risks model. Journal of the Royal Statistical Society. Series B

(Statistical Methodology), 65(3):pp. 701�710.

Andrews, D. W. K. and Shi, X. (2013). Inference based on conditional moment inequalities.

Econometrica, 81(2):609�666.

Andrews, D. W. K. and Soares, G. (2010). Inference for parameters de�ned by moment

inequalities using generalized moment selection. Econometrica, 78(1):119�157.

28



Bailey, L. (2004). Weighting alternatives to compensate for longitudinal nonresponse in the

survey of income and program participation. Technical report, Census Bureau Internal

Report.

Bugni, F. A., Canay, I. A., and Shi, X. (2017). Inference for subvectors and other functions

of partially identi�ed parameters in moment inequality models. Quantitative Economics,

8(1):1�38.

Chen, X., Tamer, E., and Torgovitsky, A. (2011). Sensitivity analysis in semiparametric

likelihood models. Working paper.

Chetty, R. (2008). Moral hazard versus liquidity and optimal unemployment insurance.

Journal of Political Economy, 116(2):pp. 173�234.

Doetsch, G. (1974). The Laplace Transform as an Analytic Function, pages 26�30. Springer

Berlin Heidelberg, Berlin, Heidelberg.

Elbers, C. and Ridder, G. (1982). True and spurious duration dependence: The identi�ability

of the proportional hazard model. Review of Economic Studies, 49(3):403�09.

Hausman, J. A. and Woutersen, T. (2014). Estimating a semi-parametric duration model

without specifying heterogeneity. Journal of Econometrics, 178:114 � 131.

Heckman, J. and Singer, B. (1984). A method for minimizing the impact of distributional

assumptions in econometric models for duration data. Econometrica, 52(2):271�320.

Heckman, J. J. and Honoré, B. E. (1989). The identi�ability of the competing risks model.

Biometrika, 76(2):325�330.

Honoré, B. E. and Lleras-Muney, A. (2006). Bounds in competing risks models and the war

on cancer. Econometrica, 74(6):1675�1698.

Horowitz, J. L. (1999). Semiparametric estimation of a proportional hazard model with

unobserved heterogeneity. Econometrica, 67(5):1001�1028.

29



IDES (2017). Unemployment insurance bene�ts handbook. Technical report, The Illinois

Department of Employment Security.

Kaido, H., Molinari, F., and Stoye, J. (2019). Con�dence intervals for projections of partially

identi�ed parameters. Econometrica. forthcoming.

Khan, S., Ponomareva, M., and Tamer, E. (2016). Identi�cation of panel data models with

endogenous censoring. Journal of Econometrics, 194(1):57 � 75.

Khan, S. and Tamer, E. (2009). Inference on endogenously censored regression models using

conditional moment inequalities. Journal of Econometrics, 152(2):104�119.

Masten, M. A. and Poirier, A. (2018). Identi�cation of treatment e�ects under conditional

partial independence. Econometrica, 86(1):317�351.

Meyer, B. D. (1990). Unemployment insurance and unemployment spells. Econometrica,

58(4):757�782.

Peterson, A. V. (1976). Bounds for a joint distribution function with �xed sub-distribution

functions: Application to competing risks. Proceedings of the National Academy of Sci-

ences, 73(1):11�13.

Ridder, G. and Woutersen, T. M. (2003). The singularity of the information matrix of the

mixed proportional hazard model. Econometrica, 71(5):1579�1589.

Slud, E. V. and Bailey, L. (2006). Estimation of attrition biases in SIPP. ASA Section on

Survey Research Methods.

Szydlowski, A. (2019). Online appendix to 'Endogenous Censoring in the Mixed Proportional

Hazard Model with an Application to Optimal Unemployment Insurance'.

Van den Berg, G. J., Lindeboom, M., and Ridder, G. (1994). Attrition in longitudinal panel

data and the empirical analysis of dynamic labour market behaviour. Journal of Applied

Econometrics, 9(4):421�435.

30



Van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes:

with Applications to Statistics. Springer-Verlag, New York.

31



Figure 1: Marginal identi�ed sets

M = 2 M = 10 M = 60

α [1.37, 1.62] [1.37, 1.62] [1.37, 1.62]

β [-0.62,-0.32] [-0.55,-0.37] [-0.54,-0.38]

γ [0.36, 1.01] [0.36, 1.00] [0.36, 1.00]

Note: The table gives the marginal identi�ed sets, i.e. the projection of the 3-dimensional identi�ed set

on one of the dimensions. In the �gures points for higher M are superimposed on points corresponding to

lower M . The cross corresponds to the true value in the model. The diamond and the dashed line mark

the median point estimate and median con�dence interval obtained from estimating the model under the

assumption of independent censoring on 1000 simulated samples with n = 4000. The median con�dence

interval is constructed using the median standard error across these simulations.
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Figure 2: Yearly welfare change from a 1$ increase in weekly UI bene�t as a percent of GDP

Note: The dashed lines mark the range of values in our con�dence set from columns (6) and (7) in Table 3

that are consistent with condition (6).
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Online Appendix

A Further examples of endogenous censoring

Example 3 (censoring through competing risks): Suppose we are studying the im-

provements in the treatment of cancer over time (e.g. as in Honoré and Lleras-Muney (2006)).

We observe the minimum of durations until death from various causes, e.g. if a person with

cancer dies because of cardiovascular disease, her duration until death from cancer is cen-

sored. Individuals who have cancer may also possess risk factors that make them more prone

to die from other causes, e.g. cardiovascular disease. Thus, the underlying observed and un-

observed risk factors will be correlated both with the duration until death from cancer as

well as with the censoring variable (here, the minimum of durations until death from other

causes). Similar concerns arise in economic contexts. For example, suppose we investigate

unemployment exit rates among people aged 55-65. People in this group face important

health risks so they would often exit to disability or die and their unemployment spells are

censored. Individuals with poor health will usually have more trouble �nding a job. If

health status is not observed perfectly, this would mean that unobserved characteristics are

correlated both with employment risk and with competing risks (disability, death).

Example 4 (entry into unemployment during business cycle): Suppose there are

two types of people - high (H) and low (L) - and H types leave unemployment faster (due

to better motivation, search technology, higher unobserved productivity etc.). We observe a

sample of individuals entering unemployment over a period of 10 quarters. Unemployment

spells still running at the �nal date of observation are right-censored. Suppose that the

distributions of entries into the unemployment pool di�er between two types and are as in

Figure 3. Here Ci is the time from entering unemployment until the end of the observation

window. Thus, for the person starting her jobless spell at time t we will have Ci = 10 −

t. Clearly, the distribution of censoring is not independent of the unobserved type. The
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Figure 3: Distribution of entries into unemployment

Note: Figure plots densities of entries into unemployment within the 10 quarter window for two groups of
unemployed - H and L. Ci denotes a censoring time for an individual who entered the unemployment pool
between the sixth and the seventh quarter.

pattern of entries presented in the graph may arise in applications if the employment of low

productivity workers is more procyclical than that of high productivity types (the problem

arises also if it is more anticyclical, just �ip H and L in the �gure).
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B Proofs

B.1 Proof of Proposition 1

Proof. First, introduce the following notation:

px ≡ P (D = 1|X = x)

Lx(y; θ) ≡ 1− Lv(Λ(y;α)ex
′β; γ)

Px(y; 0) ≡ P (Y ≤ y|D = 0, X = x)

De�ne:

Ψx(y; θ) =
Lx(y; θ)− P (Y ≤ y|D = 1, X = x)px

1− px

In order to prove that inequalities (P1)-(M) provide sharp characterization of the identi�ed set we

need to show that for any θ = (α, β, γ) satisfying the inequalities we can construct Ỹ such that:

(i) Ỹ = Y if D = 1 and Ỹ ≥ Y if D = 0

(ii) P (Ỹ ≤ y|X = x) = Lx(y; θ) for any x ∈ X and any y ∈ [0,∞)

If there is no censoring, i.e. px = 1, then construction of Ỹ is simple, just set Ỹ = Y whenX = x.

Condition (i) is trivially satis�ed. Now note that Su(y|x)− S(y|x) = P (Y ≤ y,D = 0|X = x) = 0

for such x, thus if θ satis�es inequalities (P1)-(P2), then S(y|x) = Lv(Λ(y;α)ex
′β; γ) and condition

(ii) is satis�ed.

Let's focus on the case px < 1. If θ satis�es inequality (M), then Ψx(y; θ) is non-decreasing.

Further, it is continuous under our MPH model and we have:

lim
y→−∞

Ψx(y; θ) = 0 lim
y→+∞

Ψx(y; θ) = 1

Thus, Ψx(y; θ) is a cumulative distribution function. Let Ψ−1
x (p; θ) denote the inverse image of p
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under Ψx(·; θ). Now construct Ỹ as follows:

Ỹ =


Y if D = 1

inf{S : Ψx(S; θ) ≥ Px(Y ; 0)} if D = 0

First we show that this construction satis�es condition (i). Continuity of Ψx gives Ψx(Ỹ ; θ) =

Px(Y ; 0). Note that inequalities (P1)-(P2) imply:

0 ≤ Ψx(y; θ) ≤ Px(y; 0)

which together with invertibility of P (·; 0) gives

Y = P−1(Ψx(Ỹ ; θ); 0) ≤ P−1(P (Ỹ ; 0); 0) = Ỹ

Second, in order to show (ii) consider the following derivation:

P (Ỹ ≤ y|X = x) = pxP (Y ≤ y|D = 1, X = x) + (1− px)P (inf{S : Ψx(S; θ) ≥ Px(Y ; 0)} ≤ y|D = 0, X = x)

= pxP (Y ≤ y|D = 1, X = x) + (1− px)P (Px(Y ; 0) ≤ Ψx(y; θ)|D = 0, X = x)

= pxP (Y ≤ y|D = 1, X = x) + (1− px)Ψx(y; θ)

= Lx(y; θ)

where the second equality follows from weak monotonicity of Ψx and the �nal equality follows

from de�nition of Ψx.

B.2 Proof of Proposition 2

Proof. Note that from proof of Proposition 1: Su(y|x)− S(y|x) = P (C ≤ y,D = 0|X = x). Thus,

under our assumption bounds in (P1) and (P2) collapse and pin down S̃(y|x) over y ∈ [0, ε]. We

assume that S̃(y|x) = Lv(Λ(y;αtrue)e
x′βtrue ; γtrue) but Lv(·; γtrue) is an analytic function (see e.g.

Doetsch (1974)). Together with the assumption that Λ(·;αtrue) is analytic, this implies that S̃(y|x)

is analytic as a function of y and by analytic continuation it's uniquely pinned down on y ∈ [0,∞)
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for any x ∈ XID. Thus, we can apply standard identi�cation arguments for the MPH model (e.g.

as in Elbers and Ridder (1982)) to show that θ = (α, β, γ) is point-identi�ed.

B.3 Proof of Proposition 3

Proof. We will verify that Assumptions 4.1-4.5 needed for Theorem 4.1 in Kaido et al. (2019) to

hold. As mentioned above, we abstract from uniformity issues and verify �non-uniform� version of

these conditions.

Assumption 4.1(a)-(b)(ii) These are implied by our Assumptions 3.3(a)-(b).

Assumption 4.1(b)(iii) First note that Di[1{Yi ≤ ys+1} − 1{Yi ≤ ys}] = Di1{ys ≤ Yi ≤ ys+1}

This condition is implied by Assumption 3.3(c) given that for all s and m:

E[Di1{ys−1 ≤ Yi ≤ ys, Xi = xm}] ≤ E[Di1{Yi ≤ ys, Xi = xm}] ≤ 1− P (Yi > ys, Xi = xm)

so E[Di1{Yi ≤ ys, Xi = xm}] is bounded away from 0 and 1.

Assumption 4.1(b)(iv) This assumption is required for uniformity, thus we skip it.

Assumption 4.2 We use the default GMS function in KMS procedure, which satis�es this assump-

tion. Since we impose Assumption 4.3-(I) in KMS we only require κn = o(n1/2) which follows from

our Assumption 3.2.

Assumption 4.3-(I) Note that our Assumption 3.3(c) prevents the moment conditions from being

perfectly correlated, in particular, it implies that for every value of xm some fraction of observations

on Ỹi will be censored with positive probability.

Assumption 4.4(i) Let Oθ denote the gradient with respect to θ. We have:

Oθ
µj(Yi, Xi, θ)

σj(θ)
=

Oθµj(Yi, Xi, θ)σj(θ)− Oθσj(θ)µj(Yi, Xi, θ)

σj(θ)2

Now since minj infθ∈Θ σj(θ) is bounded away from zero (note that since we are using Assump-

tion 4.3-(I) in KMS we can replace Θε with Θ in their Assumption 4.4), µj is bounded for all j and

Assumption 3.3(d) holds, we conclude that OθE[µj(Yi, Xi, θ)/σj(θ)] exists. Moreover, it can be con-
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sistently estimated (uniformly over Θ) by replacing P (Xi = xm), P (Yi > ys, Xi = xm), E[Di1{Yi ≤

ys, Xi = xm}] and E[Di1{ys ≤ Yi ≤ ys+1, Xi = xm}] in the expressions for Oθµj and Oθσj by their

sample analogs.

Assumption 4.4(ii) Assumption 3.3 implies that there exists σ > 0 such that minj infθ∈Θ σj(θ) >

σ. For θ, θ̃ ∈ Θ consider the following derivation:

∥∥∥∥∥Oθµj(Yi, Xi, θ)

σj(θ)
− Oθ

µj(Yi, Xi, θ̃)

σj(θ̃)
)

∥∥∥∥∥ ≤ 1

σ2

{∥∥∥Oθµj(Yi, Xi, θ)σj(θ)− Oθµj(Yi, Xi, θ̃)σj(θ̃)
∥∥∥

+
∥∥∥Oθσj(θ)µj(Yi, Xi, θ)− Oθσj(θ̃)µj(Yi, Xi, θ̃)

∥∥∥}
≤ 1

σ2

{
|σj(θ)|‖Oθµj(Yi, Xi, θ)− Oθµj(Yi, Xi, θ̃)‖

+ ‖Oθµj(Yi, Xi, θ̃)‖|σj(θ)− σj(θ̃)|

+ |µj(Yi, Xi, θ̃)|‖Oθσj(θ)− Oθσj(θ̃)‖

+ ‖Oθσj(θ)‖‖µj(Yi, Xi, θ)− µj(Yi, Xi, θ̃)‖
}

Note that |σj(θ)| and |µj(Yi, Xi, θ̃)| are bounded. Assumptions 3.3(a) and 3.3(d) imply that

‖Oθµj(Yi, Xi, θ̃)‖ and ‖Oθσj(θ)‖ are bounded and that µj(Yi, Xi, θ),Oθµj(Yi, Xi, θ̃), σj(θ),Oθσj(θ)

are Lipschitz continuous in θ. Thus, there existsM <∞ such that maxj

∥∥∥Oθ µj(Yi,Xi,θ)σj(θ)
− Oθ

µj(Yi,Xi,θ̃)

σj(θ̃)
)
∥∥∥ ≤

M‖θ − θ̃‖. Moreover, Assumption 3.3(d) implies maxj supΘ0

∥∥∥Oθ µj(Yi,Xi,θ)σj(θ)

∥∥∥ ≤ M̄ for M̄ <∞.

Assumption 4.5(i) This assumption is satis�ed because moments µj are built up from indicator

functions and indicator functions of measurable sets are measurable.

Assumption 4.5(ii) We will show that under Assumption 3.3 the class of functions:

Fj =

{
fj : [0,∞)×X 7→ R : fj(z1, z2) =

µj(z1, z2, θ)

σj(θ)
; θ ∈ Θ

}

is Donsker for every j = 1, . . . , J . By Theorem 1.5.7 in Van der Vaart and Wellner (1996) (VW

henceforth) this implies that the empirical process
√
n(µ̄j(·) − E[µj(·)])/σj(·) is asymptotically

equicontinuous with respect to the variance semimetric.

Since minj infθ∈Θ σj(θ) > σ, by Example 2.10.9 in VW it remains to show that the classes of

functions entering the moments µj are Donsker. Firstly, the functions 1{· ≥ ys, · = xm}, 1{· = xm}
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and Di1{· ≤ ys, · = xm} are not indexed by θ, thus these are singleton classes and trivially Donsker.

The function Lm,s(θ) is constant in Y and X and, thus, Donsker as well. Since all the above men-

tioned classes are uniformly bounded for every m and s by Examples 2.10.7 and 2.10.8 in VW we

conclude that Fj is Donsker for every j.

C Application: additional results

C.1 Cox model estimates with a restricted set of covariates

Table 4: Cox model estimates

(1) (2) (3) (4) (5)
log UI bene�t -0.504∗∗ -0.520∗∗ -0.455∗∗ -0.499∗∗ -0.410∗∗

[-0.795,-0.214] [-0.795,-0.246] [-0.727,-0.183] [-0.811,-0.188] [-0.726,-0.0930]

log annual wage 0.0522∗∗ 0.103∗∗∗ 0.0948∗∗∗ 0.0852∗∗ 0.113∗∗∗

[0.0153,0.0892] [0.0663,0.139] [0.0480,0.142] [0.0285,0.142] [0.0605,0.166]

av. unempl. rate -0.110∗∗∗ -0.105∗∗∗ -0.107∗∗∗ -0.0951∗∗ -0.0473
[-0.161,-0.0596] [-0.154,-0.0564] [-0.153,-0.0604] [-0.160,-0.0297] [-0.153,0.0585]

age -0.0161∗∗∗ -0.0174∗∗∗ 0.261∗∗∗

[-0.0194,-0.0127] [-0.0208,-0.0140] [0.193,0.328]

married 0.223∗∗∗ 0.243∗∗∗ 0.183∗∗∗

[0.160,0.285] [0.163,0.323] [0.121,0.245]

onseam -0.0349
[-0.0949,0.0251]

education 0.000649
[-0.0103,0.0116]

log total HH wealth 0.00644
[-0.0160,0.0289]

discretization none none none 6× 2× 3 4× 2× 2× 2× 2
N 4529 4529 4054 4529 4529

90% con�dence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001

We re-estimate the Cox model in Chetty (2008) based on the restricted sets of covariates

used in our application. The sample is exactly the same as in his paper (e.g. the durations
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over 50 weeks are censored). The variables �education� and �log HH wealth� are the same as

the education and log total household wealth variables in Chetty's model (they are denoted

�ed� and �l_hh_twlth� there, see Stata codes on his website). The �onseam� variable is a

dummy indicating if the person is on the �seam� between the interviews (see Chetty (2008)

for details). The results are in Table 4.

The point estimate of the elasticity of exit rate from unemployment w.r.t. UI bene�t

level in his model is -0.527 when he does not control for log total HH wealth (reported in

the publication) and -0.514 when he does (obtained by us using his codes).19 We see that

our restricted set of covariates (columns (1) and (2)) give estimates (-0.504 and -0.52) very

close to those reported in Chetty (2008). Moreover, including other variables in the model

only slightly a�ects the estimate of the elasticity and none of these additional variables is

statistically signi�cant with low values of t statistics.

Next, in columns (4)-(5) we check how discretization a�ects our results. Although the

grid for the regressors is quite coarse, the resulting point estimates and con�dence intervals

are very similar to respective estimates without discretization (columns (1) and (2)). In

particular, the con�dence intervals for the discretized model are not much wider than for the

model with continuous covariates. This is reassuring. It con�rms that discretization plays a

minor role and that the wide bounds in our �nal result in Section 5 are not driven by the

reduced variation in explanatory variables due to discretization but rather by relaxation of

the independent censoring assumption.

C.2 Severance pay and unemployment duration: Chetty (2008)

Table 7 shows results from estimating a Cox model as in Chetty (2008). The only di�erence

between his and our table is that we report estimates of additional coe�cients, in particular

the estimate of elasticity of unemployment exit rate w.r.t. UI bene�t.

19In fact the note under Table 2 in his paper claims that the reported estimates control for total household
wealth but they do not. Nevertheless, the estimates from both models are very similar.
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Table 5: Replication of Chetty(2008), Table 4, column (2)

severance pay dummy -0.233∗∗∗

(0.071)

age -0.0191∗∗∗

(0.001)

marital status dummy 0.305∗∗∗

(0.046)

high school dropout -0.308∗∗∗

(0.063)

college graduate 0.127∗∗

(0.053)

log UI bene�t 0.292∗∗∗

(0.041)
N 2428

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Note: The model includes additional controls: state, occupation, industry dummies, 10 point log annual
wage and tenure splines and time-varying e�ect of the severance pay.

C.3 Comparison with previous estimates

Table 6: Comparison with previous estimates

assumptions data 90% CI
hazard V V ⊥ C

column (6) of Table 3 Weibull yes no SIPP 1985-2000 [-1.15, -0.22]
Meyer (1990) nonparam. yes yes UI records 1978-1983 [-1.22, -0.54]
Chetty (2008) nonparam. no . SIPP 1985-2000 [-0.97, -0.09]

Note: The estimates from Meyer (1990) are based on column 5 in Table V in his paper. The estimates from
Chetty (2008) are based on column 1 in Table 2 in his paper.

C.4 Di�erent values within the quantiles

In this section we repeat our main empirical exercise for datasets that use di�erent dis-

cretizations than the one in the main text: within each quantile we set xm to the minimal or
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maximal value within the quantile instead of the mean value.20 We use the Weibull model as

this leads to faster computation. Comparing the results, given in Table 7, to those in Table

3 in the main text shows that the choice of the point within the quantile group does not

a�ect the results in any dramatic manner. If anything, it leads to narrower bounds in most

of the cases. Thus, our main conclusions would be preserved if we used these alternative

discretizations.

Table 7: Con�dence sets for the elasticity of unemployment exit rate with respect to unem-
ployment bene�t, 90% level

(1) (2) (1) (2)
minimum within quantile maximum within quantile

log UI bene�t [-9.53, 4.02] [-16.08, 3.58] [-8.97, 0.12] [-15.23, 3.33]
log annual wage x x x x
average unemployment rate x x x x
age x x
married x x
discretization 6× 2× 3 4× 2× 2× 2× 2 6× 2× 3 4× 2× 2× 2× 2
n 3986 3986 3986 3986
CI under independent

censoring [-0.84,-0.28] [-1.16,-0.49] [-0.73,-0.26] [-0.95,-0.35]

Note: The row �discretization� gives the number of discrete values of the variables included in the model in
the order they appear in the rows of the table, e.g. 6 × 2 × 3 means 6 values of log UI bene�t, 2 values of
log annual wage, 3 values of unemployment rate. The number of bootstrap replications is 500 and κ = 0.5.

C.5 Di�erent support points

In this section we investigate robustness of our empirical results to the choice of discretization

of y. Again, for simplicity we use the Weibull model. Table 8 shows that the resulting

bounds are similar when we use di�erent support points for y. Note that more re�ned

discretizations lead to more moment inequalities and longer computation (for example, for

model in column (1) it takes 25 hours on 8 Intel Xeon skylake CPUs, running at 2.6GHz and

128GB of RAM, to compute the bounds with ys = 5, 10, . . . , 50 compared to 43 hours with

20For model (1) in Table 7 we also considered combining minimum value within quantile for the log bene�t
with maximum value within quantile for the unemployment rate and obtained similar results.
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ys = 1, 3, . . . , 49). Thus, given our results in Table 8 in our empirical application we opt for

using ys = 5, 10, . . . , 50.

Table 8: Con�dence sets for the elasticity of unemployment exit rate with respect to unem-
ployment bene�t, 90% level

(1) (2)
log UI bene�t, y=5:5:50 [-16.27, 3.4] [-10.03, 6.82]
log UI bene�t, y=2:2:48 [-16.35, 3.45] [-14.47, 8.24]
log UI bene�t, y=2:4:50 [-16.62, 3.43] [-12.21, 7.43]
log UI bene�t, y=1:5:46 [-16.12, 3.53] [-10.96, 7.48]
log UI bene�t, y=1:4:49 [-16.37, 3.53] [-14.11, 7.62]
log UI bene�t, y=1:2:49 [-16.15, 3.38] [-16.83, 8.23]
log annual wage x x
average unemployment rate x x
age x
married x
discretization 4× 2× 2× 2× 2 6× 2× 3
n 3986 3986

Note: The row �discretization� gives the number of discrete values of the variables included in the model in
the order they appear in the rows of the table, e.g. 6 × 2 × 3 means 6 values of log UI bene�t, 2 values of
log annual wage, 3 values of unemployment rate. The number of bootstrap replications is 500 and κ = 0.5.

D Modi�ed search model with liquidity contraints

In this section we show that, if one allows the cost of job search in Chetty's model to

vary with the amount of assets and assume that marginal search cost is decreasing in asset

holdings, then both the liquidity e�ect and the total e�ect of increasing UI bene�ts may

have a positive sign. The intuition behind this modi�cation is that the unemployed who are

liquidity constrained may face higher marginal cost of search than wealthier individuals. For

example, it may be more di�cult or even impossible for them to search for a job in distant

locations if they cannot a�ord to pay the transportation cost. Thus, the theory need not

exclude positive values of ε1.

Let st equal the probability of �nding a job in the current period, At denote the current

holding of assets and v(·), u(·) denote �ow consumption utilities if employed and unemployed,
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respectively. Further, let wt be the wage, bt denote the unemployment bene�t and τ a lump

sum tax. Agents face a lower bound on assets L. Both the agent's discount rate and interest

rate are zero. The cost of search e�ort is denoted by ψ(st, At) where

ψs(s, A) > 0, ψss(s, A) > 0, ψsA(s, A) < 0,

i.e. the cost function is increasing and convex in s and marginal cost of search e�ort is

decreasing in the amount of asset holdings.

The value function for an individual who �nds a job at the beginning of period t and

holds assets At is:

Vt(At) = max
At+1≥L

v(At − At+1 + wt − τ) + Vt+1(At+1).

The value function for an individual who fails to �nd a job at the beginning of period t and

remains unemployed is:

Ut(At) = max
At+1≥L

u(At − At+1 + bt) + Jt+1(At+1) (7)

where

Jt(At) = max
0≤st≤1

stVt(At) + (1− st)Ut(At)− ψ(st, At).

The �rst order condition for optimal search choice is:

ψs(st, At) = Vt(At)− Ut(At). (8)

Di�erentiating with respect to At we obtain a formula for the liquidity e�ect (the e�ect of
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an unconditional cash grant on search intensity):

dst
dAt

=
v′(cet )− u′(cut )− ψsA(st, At)

ψss(st, At)

where cet , c
u
t are consumption levels in the employed and the unemployed state, respectively.

Therefore, even if v′(ce)−u′(cu) ≤ 0 as in Chetty (2008), the liquidity e�ect may be positive

if −ψsA is su�ciently large. This shows that the liquidity e�ect cannot be signed in our

extended model.

Furthermore, suppose that the unemployed is liquidity constrained, i.e. the constraint

At+1 ≥ L in (7) is binding. Now, if:

ψs(0, L) > Vt+1(L)− Ut+1(L)

the unemployed chooses zero search e�ort. An increase in the bene�t level bt relaxes the

liquidity constraint At+1 ≥ L and the unemployed can choose assets At+1 > L. With this

new level of assets it is possible that:

ψs(s
∗
t+1, At+1) = Vt+1(At+1)− Ut+1(At+1), s∗t+1 > 0

because the left hand side of (8) is decreasing in At (we need the right hand side to decrease

slower than ψs). This shows that an increase in the UI bene�t level may lead to an increase

in the unemployment exit rate in our extended model.
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E Closed form expressions for the moment conditions in

Section 2.2

The following results will be useful in the derivation below:

∫ w

−∞
e−e

−s(ed+1)e−sds =
e−e

−w(ed+1)

ed + 1
(9)∫ w

0

e−ps
2−sds = e

1
4p

√
π

p

[
Φ

(√
2p

(
w +

1

2p

))
− Φ

(
1√
2p

)]
(10)

where Φ is the standard normal c.d.f. and the second equality holds for w ≥ 0. These results

follow from integration by parts.

Let's turn to the �rst moment inequality. We have:

P (Y > y|X = x) = P (Ỹ > y,C > y|X = x) = P (α log Ỹ > α log y, α logC > α log y|X = x) =

= P (− logU < −α log y − βx− log V,− log V < c− α log y|X = x) =

=

∫ ∞
−∞

P (− logU < −α log y − βx+ s, s < c− α log y|X = x,− log V = s)e−e
−s
e−sds =

=

∫ c−α log y

−∞
e−e

−s(eα log y+βx+1)e−sds =
e−y

αe−c(yαeβx+1)

yαeβx + 1
,

where the last equality follows from (9).
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For the second moment condition we obtain:

E[D1{Y ≤ y}|X = x] = P (Ỹ ≤ C, Ỹ ≤ y|X = x) =

= P (− logU ≥ −βx− c− 2 log V,− logU ≥ −βx− log V − α log y|X = x) =

=

∫ ∞
−∞

P (− logU ≥ max{−βx− c+ 2s,−βx− α log y + s}|X = x,− log V = s)e−e
−s
e−sds =

=

∫ ∞
−∞

1−max{e−eβx+c−2s
, e−e

βx+α log y−s}e−e−se−sds =

= 1−
∫ ∞
c−α log y

e−e
βx+c−2s

e−e
−s
e−sds−

∫ c−α log y

−∞
e−e

βx+α log y−s
e−e

−s
e−sds =

= 1− e
1

4eβx+c

√
π

eβx+c

[
Φ

(√
2eβx+c

(
yαe−c +

1

2eβx+c

))
− Φ

(
1√

2eβx+c

)]
− e−y

αe−c(yαeβx+1)

yαeβx + 1
,

where the last equality follows from integration by substitution, (10) and (9).
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