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Abstract

We propose tests for the convexity/concavity of transformation of the dependent variable in

a semiparametric transformation model. The tests can be used to verify monotonicity of the

treatment effect, or, in other words, concavity/convexity of the outcome with respect to the

treatment, in (quasi-)experimental settings. Our procedure does not require estimation of the

transformation or the distribution of the error terms, thus it is easy to implement. The statistic

has a form of a U statistic or a localised U statistic and we show that critical values can be

obtained by bootstrapping. In our application we test convexity of loan demand in interest rate.
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1 Introduction

In this paper we consider testing if a treatment has a diminishing or increasing effect on the outcome.

This is often of interest on top of the question if there is an effect at all or what sign it has. For

example, often it is natural to expect that demand will be decreasing in price. However, it is less

clear if increasing the price will have a larger effect at lower or higher price levels. Our test can

address this question without fully estimating the demand relationship.

Let X denote the vector of treatments and control variables. As estimating the effect of X on the

outcome Y nonparametrically would suffer from a curse of dimensionality with non-trivial number

of treatments and controls, we impose a single-index structure and assume that the nonlinearity

of the treatment effect comes from a nonlinear transformation of Y . In other words, consider a

transformation model of the form:

T (Y ) = X ′β + ε (1)

where Y is a scalar dependent variable, X is a vector of q nondegenerate explanatory variables, β

is a vector of coefficients belonging to a set Θβ ⊂ Rq, T (·) is an increasing function with T (0) = 0

(normalization) and ε is an unobserved error term with distribution F that is independent of X.

The benefit of using the transformation model compared to a standard single-index model (i.e.

Y = T (X ′β)+ε), besides the fact that it facilitates our testing approach, is that the transformation

model allows the treatment effect of Xk to depend on the values of both observed and unobserved

characteristics (note that Y = T−1(X ′β + ε)) so can be seen as a simple way of introducing het-

erogenous treatment effects.

The main objective of this article is to provide a practically appealing test to verify if the trans-

formation function T (·) is concave/linear/convex. The examples below illustrate the importance of

testing curvature of the transformation.

Example 1. (Experiments with continuous treatment) Using normalization E(ε) = 0 and

Qα(ε) = 0 where Qα denotes α quantile, we have, respectively:

∂2E(Y |X)

∂X2
k

= −β2
kE

[
T ′′(T−1(X ′β + ε))

T ′(T−1(X ′β + ε))3

∣∣∣∣X] (mean regression)
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and

∂2Qα(Y |X)

∂X2
k

= −β2
k

T ′′(T−1(X ′β))

T ′(T−1(X ′β))3
(quantile regression)

As T ′(·) > 0 the curvature of the mean/quantile effect depends on T ′′(·). Thus, the sign of the second

derivative T ′′(·) determines if the effect of the treatment X on the α quantile of Y is concave or

convex in X. For example, if a company randomises marketing spending in different markets, testing

for concavity would answer the question if marketing spending has diminishing returns (e.g. on mean

revenue). Test of curvature has also application in experimental studies of demand elasticities (e.g.

Jessoe & Rapson (2014), Hainmueller et al. (2015), Karlan & Zinman (2018)) where it can be used

to verify if demand is concave, linear or convex.

Finally, when the transformation is linear, the treatment effect does not depend on the observed

(X) and unobserved (ε) heterogeneity. Thus, the test of linearity of T can be seen as a test of

treatment effect heterogeneity.

Example 2. (Duration models: testing hazard monotonicity) Let λ(·) and Λ(·) denote

baseline hazard and integrated baseline hazard respectively. In a duration model T (Y ) = log Λ(Y )

and

T ′′(Y ) =
λ′(Y )

Λ(Y )
−
(
λ(Y )

Λ(Y )

)2

.

Hence, rejecting concavity of T (·) (i.e. T ′′(·) < 0) implies that the baseline hazard is non-decreasing

(λ′(·) ≥ 0). One can, thus, use the test of concavity of the transformation as a test for monotonicity

of the baseline hazard, or in other words, as a test for positive duration dependence. In the economic

context, one may be interested in detecting non-monotonicity of unemployment exit rate due to

unemployment benefit exhaustion effects (see Card et al. (2007) for discussion).

Beyond these examples our procedure can also be used for specification search, i.e. determining

if one should use concave or convex transformation, and to test the curvature in wage regressions,

e.g. if the effect of education or experience is concave, or the curvature of the marginal utility

(profit) function in hedonic models (see Ekeland et al. (2004)), if the assumption of selection on

observables is met.
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Our test statistic simply compares triples of Y ’s corresponding to equally spaced index values

X ′β, thus it does not require estimation of the transformation function T or the distribution of ε.

We only require an estimator of β and symmetry of the distribution of the error terms. As the null

hypothesis in our test assumes linearity, estimating β under the null can be done simply by OLS

(alternatively, one can use the maximum rank correlation estimator, Han (1987), or semiparametric

least squares, Ichimura (1993)).

We propose both a global test that has power to detect globally convex or concave functions

and leads to asymptotic standard normal critical values, as well as a more general test that detects

local deviations from linearity, i.e. has power against alternatives that are both convex and concave

on the domain of T . The local test does not have a pivotal asymptotic distribution but we show

that the critical values can be obtained by bootstrap.

Our statistic resembles the approach in Abrevaya & Jiang (2005) who test curvature in a non-

parametric regression model. However, unlike their approach our test does not suffer from the curse

of dimensionality due to the single index structure of the regression part. Also the details of the

derivation of the asymptotic distribution are different due to presence of estimated β in our statistic

and somewhat distinct approach to obtaining power against general alternatives. These traits are

shared by Abrevaya et al. (2010) and our derivations follow similar lines to their article, though a

distinguishing feature is that we formally show validity of bootstrap for obtaining critical values.

Related literature includes tests for the sign of the treatment effect, see e.g. Kline (2016).

Testing curvature of the transformation can be also seen as a generalisation of specification testing

in Neumeyer et al. (2016) and Szydłowski (2020). The idea of using curvature of integrated hazard

to test monotonicity of baseline hazard has been utilised by Hall & Keilegom (2005). Testing

shape restrictions in a nonparametric regression model has been considered by Ghosal et al. (2000),

Gutknecht (2016), Chetverikov (2019) and Komarova & Hidalgo (2020), among others.

The article is organized as follows. Section 2 discusses the idea behind the testing procedure

informally and formal results are postponed till Sections 3-4. Sections 5-6 contain Monte Carlo

results and our application to loan demand. Proofs, besides the proof of the main proposition, are

located in the Appendix.
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2 Main idea

Figure 2 portrays the intuition behind our test. The transformation plotted in the figure is concave

and we display three (ordered) data points in the figure (Yi, Yj , Yk) for which the transformation

functions is equally spaced, i.e. T (Yk)− T (Yj) = T (Yj)− T (Yi).

Figure 1: Testing concavity

Y

T (Y )

T (Yi) = X ′iβ + εi

Yi

T (Yj) = X ′jβ + εj

Yj

T (Yk) = X ′kβ + εk

Yk

Concavity of T (·) implies that Yk − Yj > Yj − Yi. Note that T (Yk)− T (Yj) = T (Yj)− T (Yi) is

equivalent to (Xk −Xj)
′β + εk − εj = (Xj −Xi)

′β + εj − εi. Hence, “on average” equally spaced

T (Y )’s mean equally spaced index values X ′β. Therefore, we can detect deviations from concavity

by considering the following criterion:

− 1

n(n− 1)(n− 2)

∑
i 6=j 6=k

1{Yi < Yj < Yk}1{Yk − Yj < Yj − Yi}1{X ′kjβ = X ′jiβ}

where Xji ≡ Xj −Xi.

In order to make this criterion operational with continuous distribution of X ′β (which is required

for identification) we need to replace the last indicator function with a smooth kernel Kh(·) =

h−1K(·/h) and β with its estimator β̂:

− 1

n(n− 1)(n− 2)

∑
i 6=j 6=k

1{Yi < Yj < Yk}1{Yk − Yj < Yj − Yi}Kh

(
X ′kj β̂ −X ′jiβ̂

)
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Deviations from convexity can be detected in a similar fashion. Finally, we can combine both

criterion functions to detect deviations from linearity:

Un =
1

n(n− 1)(n− 2)

∑
i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh

(
X ′kj β̂ −X ′jiβ̂

)
(2)

Here, very negative values of the objective function signify convexity and large positive values

mark concavity. Outside testing, one may use the above measure itself to characterise an “average”

curvature of function T , e.g. large positive values suggest that the function is predominantly concave.

Note that our test requires only one-dimensional kernel smoothing, thus it does not suffer from

the curse of dimensionality. Also, unlike the specification test in Szydłowski (2020) it does not

require estimation of the transformation function, a computationally intense task itself.

3 Formal definition and asymptotic theory

3.1 Global test

As the probability limit of the criterion functions introduced in the previous section depends on the

extent of concavity, but these functions are centred at known values under linearity, we form our

procedure as the test of:

H0 :


T (·) is concave

T (·) is linear

T (·) is convex

vs HA :


T (·) is non-concave

T (·) is non-linear

T (·) is non-convex

depending on the question of interest. We will use the test statistic

Sn =
√
nUn

and reject the null hypothesis at level α if Sn < cα, |Sn| > c1−α/2 or Sn > c1−α respectively,

depending on H0, where cα denotes an α quantile from an appropriate asymptotic distribution.

Proposition 1 justifies our testing strategy.
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Proposition 1. Assume that the distribution of ε is symmetric and that {(Xi, Yi)}ni=1 are i.i.d.

Then, as n→∞, Un →p θ where: (i) θ ≥ 0 if T (·) is globally concave, (ii) θ = 0 if T (·) is globally

linear, (iii) θ ≤ 0 if T (·) is globally convex.

Proof. By standard arguments:

Un →p E[1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)1{X ′kjβ = X ′jiβ}]

= E[sgn(Yk − 2Yj + Yi)|Yi < Yj < Yk, X
′
kjβ = X ′jiβ]P (Yi < Yj < Yk, X

′
kjβ = X ′jiβ)

≡ θ̃P (Yi < Yj < Yk, X
′
kjβ = X ′jiβ)

Note that:

θ̃ = P (Yk − 2Yj + Yi > 0|Yi < Yj < Yk, X
′
kjβ = X ′jiβ)− P (Yk − 2Yj + Yi < 0|Yi < Yj < Yk, X

′
kjβ = X ′jiβ)

≡ (1)− (2)

and the sign of the probability limit of Un is determined by the sign of θ̃. For simplicity let Ξ denote

the conditioning event in the probabilities above.

(i) We will show that (1) ≥ (2) under concavity of T (i.e. convexity of T−1). We have:

P (Yk − 2Yj + Yi > 0|Ξ) =

∫
P (Yk − 2Yj + Yi > 0|Yi < Yj < Yk, X

′
kjβ = X ′jiβ = ξ)dF (ξ)

≡
∫
P (Yk − 2Yj + Yi > 0|Ξ(ξ))dF (ξ)

Let εji ≡ εj − εi. Denote a = X ′jβ + εj , b = X ′iβ + εi and ∆ = ξ + εkj . Note that the conditioning

event Yi < Yj < Yk implies that ∆ > 0, a− b > 0 by monotonicity of T . We can rewrite the event

Yk − 2Yj + Yi > 0 as:

T−1(a+ ∆)− T−1(a) > T−1(a)− T−1(b)

Conditional on Ξ(ξ) this event is implied by εkj > εji. To see that observe that the latter event

implies ∆ > a− b which under convexity of T−1 (i.e. concavity of T ) gives the desired result. Thus,

7



we have:

P (Yk − 2Yj + Yi > 0|Ξ) ≥ P (εkj > εji|Ξ).

On the other hand, Yk − 2Yj + Yi < 0 ⇐⇒ T−1(a + ∆) − T−1(a) < T−1(a) − T−1(b), which

under concavity implies εkj < εji as we need ∆ < a − b for this event to occur and by definition

∆ = a− b+ εkj − εji. Hence:

P (Yk − 2Yj + Yi < 0|Ξ) ≤ P (εkj < εji|Ξ).

which implies θ̃ ≥ 2P (εkj > εji|Ξ) − 1 and in order to show that θ̃ ≥ 0 we need to show that

P (εkj < εji|Ξ) = 0.5.

Let F (·) denote the distribution of ε. Direct calculation gives:

P (εkj < εji|Yi < Yj < Yk, X
′
kjβ = X ′jiβ = ξ) =

P (εkj < εji, Yi < Yj < Yk|X ′kjβ = X ′jiβ = ξ)

P (Yi < Yj < Yk|X ′kjβ = X ′jiβ = ξ)

=

∫ ∫ ε2+ξ
−∞ [F (2ε2 − ε1)− F (ε2 − ξ)]dF (ε1)dF (ε2)∫

F (ε2 + ξ)F (−ε2 + ξ)dF (ε2)

Note that under the symmetry of the distribution of ε:

∫ ∫ ε2+ξ

∞
[F (2ε2 − ε1)− F (ε2 − ξ)]dF (ε1)dF (ε2) =−

∫ ∫ ε2+ξ

−∞
F (ε1 − 2ε2)dF (ε1)dF (ε2)

+

∫
F (ε2 + ξ)F (−ε2 + ξ)dF (ε2)

and
∫
F (ε2 + ξ)F (−ε2 + ξ)dF (ε2) = 2

∫∞
0 F (ε2 + ξ)F (−ε2 + ξ)dF (ε2). Thus, showing that P (εkj <

εji|Yi < Yj < Yk, X
′
kjβ = X ′jiβ = ξ) = 1/2 is equivalent to showing:

∫ ∞
0

F (ε2 + ξ)F (−ε2 + ξ)dF (ε2) =

∫ ∫ ε2+ξ

∞
F (ε1 − 2ε2)dF (ε1)dF (ε2) (3)

To demonstrate that, let r(ε2) ≡
∫ ε2+ξ
−∞ F (ε1 − 2ε2)dF (ε1). Integrating by parts we obtain:

r(−ε2) = F (ε2 + ξ)F (−ε2 + ξ)− r(ε2)
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Now, with the help of a change of variables, the right-hand side of (3) can be written as:

∫ 0

−∞
r(ε2)dF (ε2) +

∫ ∞
0

r(ε2)dF (ε2) =

∫ ∞
0

r(−ε̃2)dF (ε̃2) +

∫ ∞
0

r(ε2)dF (ε2)

=

∫ ∞
0

[r(−ε2) + r(ε2)]dF (ε2) =

∫ ∞
0

F (ε2 + ξ)F (−ε2 + ξ)dF (ε2)

which concludes the proof of (3).

(ii) It is enough to note that if T is linear P (Yk − 2Yj + Yi < 0|Ξ) = P (εkj < εji|Ξ), which

implies θ̃ = 0.

(iii) This part follows from an argument mirroring the one in (i).

Remark 1. If we defined our test statistic using two independent pairs of observations, namely:

S̃n =

√
n

n(n− 1)(n− 2)(n− 3)

∑
i 6=j 6=k 6=l

1{Yi < Yj < Yk < Ym}sgn(Ym − Yk − Yj + Yi)Kh

(
(Xmk −Xkj)

′β̂
)

the requirement for symmetry of the distribution of ε could potentially be dropped. This would

however come at the increased computational cost as we have a 4-th order U statistic now. Also

as we require four observations on Y with approximately equally spaced index values X ′β instead of

triples in our original statistic, the test based on S̃n is likely to have lower finite sample power than

our baseline test.

In order to obtain critical value for our tests we will assume that the model under the null

hypothesis is linear. This is the worst-case H0 for testing concavity/convexity as any small local

deviation from linearity violates the hypothesis. This can also be seen from the proof of Proposition

1. In order to derive the asymptotic distribution of our statistic we make the following assumptions.

Assumption 1. (a) The kernel K(·) is a bounded, nonnegative, symmetric, twice continuously

differentiable function with support on [−1, 1] and uniformly bounded derivatives satisfying:

(i)
∫
K(s)ds = 1

(ii)
∫
s2K(s)ds <∞

(b) h→ 0 and nh4/ log4 n→∞ as n→∞
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(c) Conditional on the remaining regressors, the distribution of the first element of X is absolutely

continuous with respect to the Lebesgue measure, with bounded and twice continuously differ-

entiable density and uniformly bounded second derivatives. The matrix E[XiX
′
i] has bounded

elements.

(d) The density of ε is bounded and twice continuously differentiable, the derivatives are uniformly

bounded.

(e) The estimator of β satisfies: β̂ − β = 1
n

∑n
i=1 Ωi + op(n

−1/2), with E[Ωi] = 0 and bounded

E[ΩiΩ
′
i].

The bandwidth rate condition in Assumption 1(b) is rather weak and allows standard “rule-of-

thumb” bandwidth choice h ∼ n−1/5. Assumption 1(e) is satisfied by a wide range of estimators

including the OLS estimator in the linear model, Han’s MRC or Ichimura’s semiparametric least

squares (see e.g. appendix in Szydłowski (2020) for discussion).

Let ξji denote the index X ′jiβ and fξ|ξ denote the density of ξkj given ξji. Define:

H(Yi, Xi, ξji, ξkj) = E[1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)|Yi, Xi, ξji, ξkj ]

+ E[1{Yj < Yi < Yk}sgn(Yk − 2Yi + Yj)|Yi, Xi, ξji, ξkj ]

+ E[1{Yj < Yk < Yi}sgn(Yi − 2Yk + Yj)|Yi, Xi, ξji, ξkj ]

δ(Yi, Xi, ξji, ξkj) = H(Yi, Xi, ξji, ξkj)fξ|ξ(ξkj |ξji = (Xj −Xi)
′β)

G(ξji, ξkj) = E[1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)(Xkj −Xji)
′|ξji, ξkj ]

µ(ξji, ξkj) = G(ξji, ξkj)fξ|ξ(ξkj |ξji)

and let µ1 denote the derivative of µ with respect to the first argument.

Theorem 1. If Assumption 1 holds, we have:

√
n(Un − θ)→d N(0, E[ψ2

i ])

where ψi = E[δ(Yi, Xi, ξji, ξkj)|Yi, Xi]− E[µ1(ξji, ξji)]Ωi.

As linearity is the boundary case for testing H0: T (·) is concave, or H0: T (·) is convex, we
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will reject concavity if Sn < cα and reject convexity if Sn > c1−α, where cα denotes an α quantile

from the normal asymptotic distribution. As typical with U-statistics, estimating the variance of

the asymptotic distribution of Sn is difficult. On the one hand, the plug-in estimator will involve

estimating derivatives of conditional moments and distributions, which requires delicate choices of

bandwidths and, essentially, calculation of higher order U-statistics. On the other hand, using the

approach in Ghosal et al. (2000) will lead to a 5-th order U-statistic, which would be difficult to

calculate with sample sizes typically encountered in applications.1 Thus, in Section 4 we resort to

bootstrap for calculating the critical value as bootstrapping involves only repeated calculation of a

3-rd order U-statistic, Un, which we find computationally easier than the aforementioned methods.

The global test introduced in this section only has power against global deviations from con-

cavity/linearity/convexity and does not have power if the function is both convex and concave on

different parts of the domain. Thus, it can be used as a first check – for example, if the test rejects

concavity the researcher concludes that the function cannot be globally concave. Failure to reject

would, then, mean that one has to consider our local test described in the next section, in order to

verify if indeed the function is globally concave.

3.2 Local test

The main idea of the local test is to consider only triples of the kind portrayed in Figure 2 local

to a point y in the domain of the transformation function. In other words, we will check if the

transformation function is concave/linear/convex locally around y. Local concavity may be of

interest by itself or, to verify if the treatment effect is concave globally, we will take the minimum

of the local statistics at different points y to run the test. We will focus on the latter as testing

local concavity at y can be preformed in a very similar fashion to the global test described in the

previous section.
1Proceeding as there would involve calculating:

σ̂2 =
1

n(n− 1)(n− 2)(n− 3)(n− 4)

∑
i 6=j 6=k 6=l6=m

(1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh

(
X′kj β̂ −X

′
jiβ̂
)

+ µ̃1Ωi)

× (1{Yi < Yl < Ym}sgn(Ym − 2Yl + Yi)Kh

(
X′mlβ̂ −X

′
liβ̂
)

+ µ̃1Ωi)

+ symmetric terms,

where µ̃1 is an estimator of −3E[µ1(ξji, ξji)] (which itself is a 3-rd order U statistic).
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Formally, define:

Un(y) =
1

n(n− 1)(n− 2)

∑
i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh(Yi − y)Kh(Yj − y)

×Kh(Yk − y)Kh

(
(Xkj −Xji)

′β̂
)

where in practice the bandwidth used for (Yi − y) can be different than for (Xkj −Xji)
′β̂ but, in

order to simplify exposition and mathematical arguments, we assume that both bandwidths are of

the same order and denote both by h. Now our local test statistic for testing concavity is defined

as:

Sconcn = inf
y∈Y

√
nUn(y)

and the statistic for testing convexity is defined with sup replacing inf above. Linearity can be

tested with either of these statistics. For the rest of the article we concentrate on Sconcn as results

for testing convexity and linearity follow by very similar arguments.

Intuitively, low values of Sconcn show that there is a large deviation from concavity at some point

y and, hence, the treatment effects are not accelerating on the whole domain of the outcome.2

Therefore, the null hypothesis of concavity would be rejected if Sconcn < cconcα where cconcα is an

appropriate quantile from the asymptotic approximation to the distribution of our statistic.

In order to obtain cconcα one could proceed as in Ghosal et al. (2000): approximate the standard-

ised U-statistic process
√
nUn(y)/σn(y), where σn(y) is the estimator of the asymptotic variance,

by a Gaussian process and then apply the extreme value theory in order to derive the distribution

of the infimum. However, this approach would involve estimating σn(y), which as discussed above

is problematic in our setup. Instead we propose to use bootstrap to approximate cconcα .

Define:

φI
i (y) =E[1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh(Yi − y)Kh(Yj − y)Kh(Yk − y)Kh

(
(Xkj −Xji)

′β
)
|Yi, Xi]

+ E[1{Yj < Yi < Yk}sgn(Yk − 2Yi + Yj)Kh(Yi − y)Kh(Yj − y)Kh(Yk − y)Kh

(
(Xki −Xij)

′β
)
|Yi, Xi]

+ E[1{Yj < Yk < Yi}sgn(Yi − 2Yk + Yj)Kh(Yi − y)Kh(Yj − y)Kh(Yk − y)Kh

(
(Xik −Xkj)

′β
)
|Yi, Xi]

φII
i (y) =E[1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh(Yi − y)Kh(Yj − y)Kh(Yk − y)K′h

(
(Xkj −Xji)

′β
)

(Xkj −Xji)
′]Ωi

2Note that by the formulas in Example 1 concavity of T is equivalent to convexity of the outcome in the treatment.
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where K ′h denotes the derivative of Kh. The following asymptotic approximation will be useful in

justifying our bootstrap procedure.

Theorem 2. If Assumption 1 holds, then:

sup
y

∣∣∣∣∣Un(y)− 1

n

n∑
i=1

φi(y)

∣∣∣∣∣ = op(n
−1/2)

where φi(y) = φIi (y) + φIIi (y).

4 Bootstrap critical values

Our symmetric wild bootstrap procedure for obtaining the critical value for the global or local test

is as follows:

1. Estimate β (e.g. by OLS) and calculate the residuals ε̂i = Yi −X ′iβ̂.

2. Draw a random sample {vi : i = 1, . . . , n} from a two point distribution on {-1,1} with

P (vi = −1) = P (vi = 1) = 1/2, define ε∗i = viε̂i and generate Y ∗i by:

Y ∗i = X ′iβ̂ + ε∗i

(alternatively, resample also X∗i independently and generate Y ∗i = X∗
′
i β + ε∗i ).

3. Estimate β (e.g. by OLS) using the bootstrap sample. Let the resulting estimate be denoted

by β∗.

4. Calculate the statistic Sn or Sconcn on the bootstrap sample using β∗ instead of β̂. Denote the

resulting bootstrap statistics by S∗n and Sconc,∗n .

5. Obtain the empirical distribution of S∗n and Sconc,∗n by repeating steps 1-4 many times. Cal-

culate the α quantiles of the empirical distribution of S∗n and Sconc,∗n and denote them by c∗α

and cconc,∗α , respectively.

Note that step two imposes the null hypothesis of linearity on the bootstrap sample so it “re-

centers” the bootstrap statistic on the linear case for which θ = 0. Furthermore, sampling from
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a symmetric two point distribution preserves symmetry of the error distribution in the bootstrap

sample, mirroring the data generating process.

Theorem 3. If Assumption 1 holds and, additionally, each component of Xi and Ωi has a finite

fourth moment, then, if T (·) is linear:

lim
n→∞

P
(√
nUn ≤ c∗α

)
= α.

Moreover, we have:

lim
n→∞

P (Sconcn ≤ cconc,∗α ) = α

(and equivalent result holds for a test of linearity or convexity).

The proof of the second result uses Theorem 2.3 in Chernozhukov et al. (2016), which requires

the additional finite fourth moment assumption. If β is estimated by OLS, a sufficient condition for

a finite fourth moment of Ωi is that εi has a finite fourth moment. Theorem 3 implies, for example,

that we can reject global concavity of T , i.e. increasing treatment effect, when Sconcn < cconc,∗α , and

reject global linearity when |Sconcn | > cconc,∗1−α/2.

Finally, let us note that the computation of the local statistic involves evaluating a third order

U-statistic at different points y and, hence, takes significantly longer to compute than the global

statistic. In practice, we recommend running the global test first and then proceed with the local

test if the null hypothesis cannot be rejected in the first step.

5 Monte Carlo simulations

The data is generated from the following four models:

Y = X + ε (D0)

log(Y + 2.12)− log(2.12) = X + ε (D1)

1

13
sinh(2Y ) = X + ε (D2)

log(2.12)− log(2.12− Y ) = X + ε (D3)
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where we draw X and ε from the standard normal distribution. Note that D0 is the worst-case

model in the null hypothesis, D1 imposes concavity of the transformation, D3 convexity and D2 is

neither concave or convex.

Figure 2: Monte Carlo designs

We run 1000 Monte Carlo replications. We use Gaussian kernel functions and rule-of-thumb

bandwidths for both (Xkj −Xji)
′β̂ and Yi, namely h = 1.06σ̂n−1/5 where σ̂ is a sample standard

deviation of (Xkj−Xji)
′β̂ or Yi. In order to calculate the local statistic Sconcn we use a grid of values

for y: -2:0.5:2, and take a minimum over the grid. The number of bootstrap replications used to

calculate the critical value is 500 and we consider three sample sizes: n = 100, 250 and 500.

Table 1: Test of concavity, rejection probabilities, 5% level

Global test Local test
n = 100 n = 250 n = 500 n = 100 n = 250 n = 500

H0 true D0 0.072 0.057 0.050 0.055 0.042 0.039
H0 true D1 0.000 0.000 0.000 0.000 0.000 0.000
H0 false D2 0.093 0.090 0.093 0.499 0.854 0.953
H0 false D3 1.000 1.000 1.000 1.000 1.000 1.000

Note: 1000 Monte Carlo simulations, 500 bootstrap replications.

Table 1 contains the results of the Monte Carlo simulations. We concentrate on testing concavity,

as the results for linearity and convexity tests, are very similar. The rejection probabilities in the

15



linear case (D0) are close to the nominal level for both the global and local test and both test have

perfect power against a globally convex alternative in D3.

As predicted, the global test has low power against D2, for which the transformation function is

concave on half of the domain and convex on the other half. In this case deviations from concavity,

as measured by our global statistic, cancel with positive values of the statistic obtained for the part

of the domain where the function is concave, resulting in the global statistic taking values close to

zero, just as for the linear case.

For design D2, our local test significantly improves over the global test with almost perfect

detection of non-concavity for n = 500. This is in line with the intuition that the local test will

concentrate on the region of largest violation of concavity instead of averaging over the measures

of concavity for different regions. Overall, Table 1 shows very good performance of both of our

procedures.

6 Application: Curvature of loan demand

We use data from Karlan & Zinman (2008), who ran randomised trials with a for-profit consumer

lender in South Africa targeting high-risk consumer loan market. The lender randomised individual

interest rate direct mail offers to over 50,000 former clients, conditional on the client’s risk cate-

gory. Karlan & Zinman (2008) found that the loan demand curves are downward sloping. We will

investigate if the demand curves are convex or, in other words, if increases in interest rate have a

stronger negative effect on loan demand the lower the rate.

The dependent variable is the amount borrowed (in rands) at the offered interest rate.3 The

experiment was ran in three mailer waves over four months, thus as in Karlan & Zinman (2008) we

include the risk category and wave dummies as controls in X. The data contains 2325 observations.

As a first step, we estimated the transformation function in our model using the estimator in Chen

(2002) and plotted it in Figure 3 together with a smoothed version.4 The figure suggests that the

transformation is not far from being concave on most of its domain, maybe besides the values of

loan size below 1000 rands, which implies convex demand curve by formulas in Example 1.
3We abstract from selectivity issues here. See Karlan & Zinman (2008) for discussion.
4This is for illustrative purposes only. Note that the estimator in Chen (2002) does not impose monotonicity, so

a full exercise of estimating T should include additional step of monotonising the estimate. We want to stress that
our testing procedure does not rely on any estimator of T .

16



Figure 3: Estimated transformation
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Table 2: Testing curvature of loan demand, 5% level

H0 Global test Local test Local test, loan ≥ 1000

Statistic Reject H0? Statistic Reject H0? Statistic Reject H0?
convexity 14.11 No -4.42 Yes -2.64 No
linearity 14.11 Yes
concavity 14.11 Yes

Data source: Karlan & Zinman (2008), replication files

In order to formally test our conjectures, we first apply our global test to verify if the demand

function is concave, linear or convex. As Table 2 shows, global test rejects linearity and concavity

of demand. Thus, in the second step we apply the local test to the null hypothesis of convexity and,

in fact, reject the null hypothesis, concluding that the loan demand is not globally convex in the

interest rate. To shed more light on where the non-convexity may come from, we re-ran the test

on the sample excluding loans lower than 1000 rands and found that convexity is not rejected on

this sub-sample. Therefore, overall we confirm that loan demand is mostly convex in interest rate,

besides very small loans sector of the market.
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7 Conclusion

Our application demonstrates usefulness of our testing procedures in recovering monotonicity of

treatment effects. Particular appeal of the procedures described in this article comes from the fact

that they avoid estimation of the transformation function and only require OLS estimation of the

vector of coefficients β. Thus, they are easy to implement. Additionally, computation of the third

order U-statistic involved in our tests can be done efficiently by sorting the data by Y first – this

reduces computational complexity to O(nlog(n) + n(n − 2)/2) from O(n3) for a straightforward

triple loop through the observations.
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Appendix

A Proofs

Let G = {gy(w1, w2, . . . , wm) : y ∈ Y ⊂ R} be a family of symmetric, real-valued functions defined

on Wm. We will use the operator notation common in the U-statistics literature. For example,

for the case of m = 2 we will have P 0h = h, P 2h =
∫ ∫

g(w1, w2)dP (w1)dP (w2), Png(w1) =

1/n
∑n

i=1 g(w1,Wi) and P ∗ng(w1) = 1/n
∑n

i=1 g(w1,W
∗
i ) etc. We say that a symmetric function g

is P -canonical if Pg(w1, . . . , wm−1, ·) = 0 for almost all w1, . . . , wm−1.

Let ‖ · ‖G ≡ supg∈G ‖ · ‖ where ‖ · ‖ is the Euclidean norm and ‖ · ‖∞, ‖ · ‖P,q denote the sup and

the Lq(P ) norm, respectively. Define a U -process:

U (m)
n g =

(n−m)!

n!

∑
i1, i2, . . . , im distinct

g(Wi1 ,Wi2 , . . . ,Wim)

and denote the same process evaluated on a bootstrap sample as U∗(m)
n g. Furthermore, define

πPk,mg(w1, . . . , wk) = (δw1 − P ) . . . (δwk
− P )Pm−kg

where δw1g = g(w1, ·).

We will frequently use the following stochastic order arithmetic, for a sequence an:

o∗p(an) + op(an) = op(an), O∗p(an) +Op(an) = Op(an)

which follows from the Law of Iterated Expectations. See Szydłowski (2020) for more discussion.

We will also write . for inequality up to a multiplicative constant where the constant does not

depend on the sample size n or the sample data (but may depend on m and characteristics of G).
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A.1 Useful lemmas

Lemma 1. Let G be a class of P-canonical, Euclidean functions with envelope G satisfying PmG2 <

∞. Then:

P‖U∗(m)
n g‖G . n−m/2

√
(PmG2)α

where 0 < α < 1 depends only on m and characteristics of G.

Proof. It follows from the proof of Lemma 2(c) in Szydłowski (2020) that:

P‖U∗(m)
n g‖G . P‖U∗(m)

n g̃‖G̃

where g̃((N
(1)
i1
,Wi1), . . . , (N

(m)
im

,Wim)) = N
(1)
i1

. . . N
(m)
im

g(Wi1 , . . . ,Wim) which is contained in the

class G̃, and {N (k)
i : i = 1, . . . , n}mk=1 denote independent copies of a sequence of independent Poisson

random variables with parameter 1/2. Note that the class of functions G̃ inherits its properties from

G, in particular it is a Euclidean class with envelope G̃ satisfying PmG̃2 <∞.

Now the Main Corollary and argument in the proof of Corollary 4 in Sherman (1994) together

with Cauchy-Schwartz inequality give:

P‖U∗(m)
n g̃‖G̃ . n−m/2

√
(PmG̃2)α . n−m/2

√
(PmG2)α

which concludes the proof.

Lemma 2. Let G be a Euclidean class of functions. We have:

P

∥∥∥∥∥U (m)
n g −

r−1∑
k=0

U (k)
n πPk,mg

∥∥∥∥∥
G

 . n−r/2
√
PmG2

P

(∥∥∥U (m)
n g − Pmg

∥∥∥
G

)
. n−1/2

√
PmG2

Proof. From Theorem A.1 in Ghosal et al. (2000) and the discussion that follows we have:

P

∥∥∥∥∥U (m)
n g −

r−1∑
k=0

U (k)
n πPk,mg

∥∥∥∥∥
G

 . n−r/2
√
PmG2

∫ 1

0
sup

Q:Q discrete
logN(ε‖G‖Q,2,G, L2(Q))r/2dε
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where N(·) denotes a covering number as in Definition 2.1.5 in Van der Vaart & Wellner (1996).

The integral on the right-hand side is bounded as G is Euclidean (ibid., Ch.2).

The second part follows from Theorem A.2 in Ghosal et al. (2000) and the same reasoning as

above.

Lemma 3. Assume that:

(a) The functional B : G → R satisfies: there exists a countable subset Ḡ of G such that for any

g ∈ G, there exists a sequence ḡm ∈ Ḡ with ḡm → g pointwise and B(ḡm)→ B(g).

(b) The class of functions G is Euclidean with a measurable envelope G.

(c) There exist constants b ≥ σ > 0 and q ∈ [4,∞) such that supg∈G P |g|k ≤ σ2bk−2 for k = 2, 3, 4

and ‖G‖P,q ≤ b.

Let Gn =
√
nPn,G∗n =

√
nP ∗n and GP denote a centred Gaussian process indexed by G with covariance

function E[GP f × GP g] = Cov(f(W ), g(W )). Let NB(ε) denote the bracketing number of the class

of functions BG = {B(g) : g ∈ G}.

Then for every γ ∈ (0, 1) there exists random variables Z and Z∗ which follow the same distri-

bution as ‖B(g) + GP g‖G (the latter, conditionally on the sample), such that:

|‖B(g) + Gng‖G − Z| = Op

(
bKn

γ1/2n1/2−1/q
+

(bσ2K2
n)1/3

γ1/3n1/6
+

(bσK
3/2
n )1/2

γ1/2n1/4

)

|‖B(g) + G∗ng‖G − Z∗| = Op

(
bKn

γ1+1/qn1/2−1/q
+

(bσ2K2
n)1/3

γ1/3n1/6
+

(bσK
3/2
n )1/2

γ1+1/qn1/4

)

where Kn is of order logNB(ε) + log n ∨ log(b/σ) and K3
n ≤ n.

Proof. This result follows directly from Corollary 2.2 in Chernozhukov et al. (2014) and Theorem

2.3 in Chernozhukov et al. (2016). Note that the differences in rates in the sample and bootstrap

version are usually only of log n order so they will not be essential to our rate results.

Lemma 4. Let K be a symmetric kernel function supported on [−1, 1]. We have:

∫ ∫ ∫
1{s1 < s2 < s3}sgn(s3 − 2s2 + s1)K(s1)K(s2)K(s3)ds1ds2ds3 = 0
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Proof. For simplicity we write
∫ 1
−1

∫ 1
−1

∫ 1
−1 as

∫ 1
−1. We have:

∫ 1

−1
1{s1 < s2 < s3}sgn(s3 − 2s2 + s1)K(s1)K(s2)K(s3)ds1ds2ds3

=

∫ 1

−1
1{s1 < s2 < s3}sgn(s3 − 2s2 + s1)K(−s1)K(−s2)K(−s3)ds1ds2ds3

=

∫ 1

−1
1{s̃1 > s̃2 > s̃3}sgn(−s̃3 + 2s̃2 − s̃1)K(s̃1)K(s̃2)K(s̃3)ds̃1ds̃2ds̃3

= −
∫ 1

−1
1{s̃3 < s̃2 < s̃1}sgn(s̃1 − 2s̃2 + s̃3)K(s̃1)K(s̃2)K(s̃3)ds̃1ds̃2ds̃3

where the first equality follows from symmetry of K, second from change of variables and the third from

sgn(−x) = −sgn(x). Finally note that the last integral is equal to the initial one after renaming the variables,

so the result follows.

Lemma 5. Let K satisfy Assumption 1(a). The classes of functions:

F1 =

{
1{y1 < y2 < y3}sgn(y3 − 2y2 + y1)K

(y1 − y
h

)
K
(y2 − y

h

)
K
(y3 − y

h

)
K

(
(x32 − x21)′β

h

)
: y ∈ Y

}
F2 =

{
1{y1 < y2 < y3}sgn(y3 − 2y2 + y1)K

(y1 − y
h

)
K
(y2 − y

h

)
K
(y3 − y

h

)
K′
(

(x32 − x21)′β

h

)
× (x32 − x21)′ : y ∈ Y

}
F3 =

{
1{y1 < y2 < y3}sgn(y3 − 2y2 + y1)K

(y1 − y
h

)
K
(y2 − y

h

)
K
(y3 − y

h

)
K′′

(
(x32 − x21)′β

h

)
× (x32 − x21)(x32 − x21)′ : y ∈ Y

}

are Euclidean with envelopes F1 = ‖K‖4∞1{|y1 − y2| < 2h}1{|y1 − y3| < 2h}1{|y2 − y3| <

2h}1{|(x32 − x21)′β| < h}, F2 = F1‖K ′‖∞/‖K‖∞(x32 − x21)′ and F3 = F1‖K ′′‖∞/‖K‖∞(x32 −

x21)(x32 − x21)′, respectively.

Proof. Note that F1, F2 and F3 are products of single functions and classes of functions of the form

K
( ·−y
h

)
, K ′

( ·−y
h

)
or K ′′

( ·−y
h

)
, which are Euclidean by Example 2.10 in Pakes & Pollard (1989).

As the product of Euclidean classes is Euclidean (see Lemma 2.14 (ibid.)), the result follows. The

form of the envelope follows from the fact that K is supported on [−1, 1].
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B Proof of Theorem 1

To simplify notation set θ = 0. The argument for θ 6= 0 follows verbatim by recentering the test

statistic appropriately. Write Un as:

Un =
1

n(n− 1)(n− 2)

{ ∑
i6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh

(
(Xkj −Xji)

′β
)

(I)

+
∑

i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)K
′
h

(
(Xkj −Xji)

′β
)

(Xkj −Xji)
′(β̂ − β) (II)

+
∑

i6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)K
′′
h

(
(Xkj −Xji)

′β̃
)

(β̂ − β)′(Xkj −Xji)(Xkj −Xji)
′(β̂ − β)

}
(III)

where β̃ is between β and β̂.

Note that by Cauchy-Schwartz inequality the third term in this decomposition can be bounded

as:

|(III)| ≤ h−3‖K′′‖∞‖β̂ − β‖2
∥∥∥∥∥∥ 1

n(n− 1)(n− 2)

∑
i6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)(Xkj −Xji)(Xkj −Xji)
′

∥∥∥∥∥∥
Now ‖β̂−β‖2 = Op(n

−1) by Assumption 1(e) and the U-statistic on the right-hand side is Op(n−1/2)

by Theorem 5.5.1A in Serfling (1980), which gives:

(III) = Op(n
−3/2h−3) = op(n

−1/2)

under our bandwidth conditions.

Further, using Assumption 1(e) I can rewrite (II) as:

1

n(n− 1)(n− 2)

∑
i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)K
′
h ((Xkj −Xji)

′β) (Xkj −Xji)
′PnΩ =

=
1

n(n− 1)(n− 2)(n− 3)

∑
i6=j 6=k 6=l

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)K
′
h ((Xkj −Xji)

′β)

× (Xkj −Xji)
′Ωl + op(n−1/2)

where the equality follows from Lemma 5.7.3 in Serfling (1980).

It remains to apply Lemma 2 to (I) and (II) with r = 2 and G containing a single function. In

order to do that, let gI and gII be symmetrised kernels of the U-statistics in (I) and (II). Note
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that (I) = U3
ng

I and (II) = U3
ng

II and the envelopes satisfy:

E(GI)2 . h−2E[1{|y1 − y2| < 2h}1{|y1 − y3| < 2h}1{|y2 − y3| < 2h}1{|(x32 − x21)′β| < h}] = O(h)

E(GII,′GII) . h−4E[1{|y1 − y2| < 2h}1{|y1 − y3| < 2h}1{|y2 − y3| < 2h}1{|(x32 − x21)′β| < h}

× (x32 − x21)′(x32 − x21)] = O(h−1)

which, using Lemma 2 gives:

P
(∥∥∥U (m)

n (gI + gII)− PnπP1,3(gI + gII)
∥∥∥) = O(n−1h−1/2) = op(n

−1/2)

under our bandwidth conditions in Assumption 1(b).

Now by direct calculation, using change of variables, Taylor expansion and
∫
K ′(u)du = 0,

∫
K ′(u)udu =

−1 we get πP1,3(gI + gII) = E[δ(Yi, Xi, ξji, ξkj)|Yi, Xi]−E[µ1(ξji, ξji)]Ωi and the result follows from

the CLT.

C Proof of Theorem 2

Let Kh(Y − y) ≡ Kh(Yi − y)Kh(Yj − y)Kh(Yk − y). Write Un(y) as:

1

n(n− 1)(n− 2)

{ ∑
i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh(Y − y)Kh

(
(Xkj −Xji)

′β
)

(I)

+
∑

i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh(Y − y)K′h
(
(Xkj −Xji)

′β
)

(Xkj −Xji)
′(β̂ − β) (II)

+ (β̂ − β)′
∑

i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh(Y − y)K′′h

(
(Xkj −Xji)

′β̃
)

(Xkj −Xji)(Xkj −Xji)
′(β̂ − β)

}
(III)

(4)

where β̃ is between β and β̂.

First, we will show that (III) = op(n
−1/2) using the second result in Lemma 2. By standard

calculation and Lemma 4:

E[1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh(Y − y)K ′′h

(
(Xkj −Xji)

′β̃
)

(Xkj −Xji)(Xkj −Xji)
′] =

= E

[ ∫
1{s1 < s2 < s3}sgn(s3 − 2s2 + s1)K(s1)K(s2)K(s3)ds1ds2ds3f(y −X ′iβ)f(y −X ′jβ)f(y −X ′kβ)

×K ′′h
(

(Xkj −Xji)
′β̃
)

(Xkj −Xji)(Xkj −Xji)
′
]

+ o(h) = o(h)

24



Let g(III)
y denote the symmetrized version of the function under the expectation above. Note that

Lemma 5 applies to the class of functions {h5g
(III)
y : y ∈ Y}, thus this class is Euclidean. Further

note that expectation of the square of the envelope of g(III)
y is of order O(h−7) by similar calculation

as above. Now Lemma 2 applied to U (3)
n g

(III)
y gives U (3)

n g
(III)
y = Op(n

−1/2h−7/2) + op(h). Thus, we

can bound (III):

(III) . ‖β̂ − β‖(Op(n−1/2h−7/2) + op(h)) = Op(n
−3/2h−7/2) + op(n

−1h)

and this is op(n−1/2) under our rate conditions.

Further, let g(II)
y denote the symmetrised version of 1{Yi < Yj < Yk}sgn(Yk− 2Yj +Yi)Kh(Y−

y)K ′h ((Xkj −Xji)
′β) (Xkj−Xji)

′Ωl. Again, by Lemma 5.7.3 in Serfling (1980) we have that (II) =

U4
ng

(II)
y + op(n

−1/2).

It remains to apply the first part of Lemma 2 to show that:

|(I) + (II)− P 3gIy − Pn(πP1,3g
I
y + πP1,4g

II
y )| . Op(n

−1h−1/2) = op(n
−1/2)

uniformly over y, and note that P 3gIy + πP1,3g
I
y = φIi (y) and πP1,4gIIy = φIIi (y) with φIi , φ

II
i defined in

the main text. We also used P 4gIIy = 0.

D Proof of Theorem 3

The main part of the argument shows that a linear representation equivalent to the one in Theorem

2 holds for the bootstrap statistic. This is done by exploiting an ’in probability’ Hoeffding decompo-

sition of the bootstrap statistic in terms of smooth functions, following the idea in Subbotin (2007)

(see also Szydłowski (2020)). Then, application of Lemma 3 finishes the proof.

Again, to simplify notation set E[Un(y)] = 0. Consider a decomposition of the form (4) but cal-

culated on the bootstrap sample (i.e. replacing β with β∗, (Xi, Yi) with (X∗i , Y
∗
i )).5 Let (I∗), (II∗)

and (III∗) denote its elements.

First, we will show (III∗) = op(n
−1/2). Note that since β∗ is an OLS estimator we have

5In the proof we assume that X∗ is resampled independently of ε∗. The same argument applies if only ε∗ is
resampled. Just define P ∗n = P ∗Y,n × PX .
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β∗ − β = β̂ − β + 1
n

∑n
i=1 Ω∗i = Op(n

−1/2). Let g(III)
y be as defined above. Apply the Hoeffding

decomposition in terms of population moments to (III):

U∗(3)
n g(III)

y = P 3g(III)
y + P ∗nπ

P
1,3g

(III)
y +

3∑
k=2

(
3

2

)
U∗(k)
n πPk,3g

(III)
y (5)

Note that we have shown that P 3g
(III)
y = o(h) above. Now, noting that we can always make the

envelope of g(III)
y greater than 1 by appropriate scaling and, thus, drop α from Lemma 1 for our

purpose, applying Lemma 1 with the help of Lemma 5 we obtain:

P sup
y
‖U∗(m)

n πP2,3g
(III)
y ‖ . O(n−1h−7/2) = op(n

−1/2) (6)

P sup
y
‖U∗(m)

n πP3,3g
(III)
y ‖ . O(n−3/2h−7/2) = op(n

−1/2) (7)

where we used the fact that envelope of P kgy(w1, w2, . . . , wm) is equal to P kG where G is the

envelope of gy. This gives |U∗(3)
n g

(III)
y −P ∗nπP1,3g

(III)
y | = op(n

−1/2)+op(h). By Lemma 5 and Lemma

A.2 in Ghosal et al. (2000) the class of functions Ḡ = {πP1,3g
(III)
y : y ∈ Y} is Glivenko-Cantelli, thus

Pnπ
P
1,3g

(III)
y = op(1) uniformly over y. By Theorem 3.5 in Gine & Zinn (1990) this is equivalent to

supy ‖(P ∗n −Pn)πP1,3g
(III)
y ‖ = op(1). Combining this result, (5),(6) and (7) gives a bound on (III∗):

|(III∗)| . op(n
−1) + op(n

−1h) + op(n
−3/2) = op(n

−1/2).

Consider (II∗) now. We have β∗ − β = β̂ − β + P ∗nΩi = P ∗nΩi + Op(n
−1/2). Again, applying

Lemma 5.7.3 in Serfling (1980) we can write:

(II∗) =
1

n(n− 1)(n− 2)(n− 3)

∑
i6=j 6=k 6=l

1{Y ∗i < Y ∗j < Y ∗k }sgn(Y ∗k − 2Y ∗j + Y ∗i )Kh(Y∗ − y)

×K ′h
(
(X∗kj −X∗ji)′β

)
(X∗kj −X∗ji)′Ω∗l + op(n−1/2)

The leading term is equal to U∗(4)
n g

(II)
y and can be decomposed as :

U∗(4)
n g(II)

y = P 4g(II)
y + P ∗nπ

P
1,4g

(II)
y +

4∑
k=2

(
4

2

)
U∗(k)
n πPk,4g

(II)
y
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Note that P 4g
(II)
y = 0 as E[Ωi] = 0 by Assumption 1(e). Furthermore, the envelopes of πk,4g

(II)
y , k =

2, 3, 4 are given by P 4−kF2Ωi where F2 is defined in Lemma 5 and, under Assumption 1, satisfy

P 2(P 2F2Ωi)
2 = O(h−4), P 3(PF2Ωi)

2 = O(h−5) and P 4(F2Ωi)
2 = O(h−7). Now applying Lemma 1

we obtain:

P sup
y
|U∗(2)
n πP2,4g

(II)
y | = O(n−1h−2)

P sup
y
|U∗(3)
n πP3,4g

(II)
y | = O(n−3/2h−5/2)

P sup
y
|U∗(4)
n πP4,4g

(II)
y | = O(n−2h−7/2)

which implies |U∗(4)
n g

(II)
y − P ∗nπP1,4g

(II)
y | = op(n

−1/2) uniformly over y.

Consider (I∗). We can decompose:

(I∗) = P 3g(I)
y + P ∗nπ

P
1,3g

(I)
y +

3∑
k=2

(
3

2

)
U∗(k)
n πPk,3g

(I)
y

Using Lemmas 1 and 5 and a similar reasoning as for (II∗) one can show that:

P sup
y
|U∗(2)
n πP2,3g

(I)
y | = O(n−1h−3/2) P sup

y
|U∗(3)
n πP3,3g

(I)
y | = O(n−3/2h−2)

which implies |U∗(3)
n g

(I)
y − P 3g

(I)
y − P ∗nπP1,3g

(I)
y | = op(n

−1/2) uniformly over y.

Recall that Sconc,∗n = supy
√
n[(I∗)+(II∗)+(III∗)] = supy

√
nP ∗n(P 3g

(I)
y +πP1,3g

(I)
y +πP1,4g

(II)
y )+

op(1) = supy{
√
nP 3g

(I)
y +

√
nP ∗n(φ

(Ic)
i (y) + φ

(II)
i (y))} + op(1), where φ(Ic)

i (y) ≡ φ
(I)
i (y) − P 3g

(I)
y .

Denote B(y) ≡
√
nP 3g

(I)
y and φci (y) ≡ φ

(Ic)
i (y) + φ

(II)
i (y) and observe that by Lemma 5 the class

{g(I)
y : y ∈ Y} is Euclidean, which implies NB(ε) ∼ log n where NB(ε) is defined in Lemma 3. We

will now show that |Sconc,∗n − supy{B(y) +GPφ
c
i (y)}| = op(1) where GPφ

c
i (y) is a centred Gaussian

process with covariance function ρ(y1, y2) = Cov(φci (y1), φci (y2)).

In order to demonstrate that, let us verify the conditions of Lemma 3. Firstly, condition (a)

is satisfied, for example, by taking Ḡ = {P 3g
(I)
y : y ∈ Yr} where Yr denotes all rational numbers

within the interval Y and by noting that P 3g
(I)
y is continuous under our assumptions. Condi-

tion (b) follows from Lemma 5 and Lemma A.2 in Ghosal et al. (2000). Next, in order to show

that condition (c) of Lemma 3 is satisfied, it is enough to verify it for φ̃i
(I)

(y) ≡ hφ
(I)
i (y) and
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φ̃i
(II)

(y) ≡ hφ(II)
i (y). Let Gh,y(Yi, Xi) ≡ E[1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi)Kh(Yj − y)Kh(Yk −

y)Kh ((Xkj −Xji)
′β) |Yi, Xi] + symmetric terms and note that φ(I)

i (y) = Gh,y(Yi, Xi)Kh(Yi − y).

Further, rewrite φ(II)
i (y) = δII(y)Ωi. We have:

E[|φ̃i
(I)

(y)|3] = E

[
E[|Gh,y(Yi, Xi)|3|Yi]K

(
Yi − y
h

)3
]

= h

∫
E[|Gh,y(y + uh,Xi)|3|y + uh]K3 (u) f(y + uh−X ′iβ)du

≤ h(1 + sup
y
E|Gh,y|4)‖f‖∞

∫
K(u)3du

E[|φ̃i
(II)

(y)|3] ≤ h3E[|δII(y)|3](1 + E‖Ωi‖4)

and supy E|Gh,y|4 = O(1) since integration over Yj and Yk absorbs the h−2 term, also one can derive

that E[|δII(y)|3] = O(1) using change of variables and
∫
K ′(u)du = 0,

∫
K ′(u)udu = −1. Note that

E‖Ωi‖4 = O(1) by the assumptions of Theorem 3. Similar reasoning shows that E[|φ̃i
(I)

(y)|4 ≤

hO(1) and E[|φ̃i
(II)

(y)|4] ≤ h4O(1).

Furthermore, note that ‖ supy φ̃i
(I)
y ‖P,q <∞ for any q as φ̃i

(I)
y is uniformly bounded and under

the assumption that Xi and Ωi have finite fourth moment we also have ‖ supy φ̃i
(II)
y ‖P,4 < ∞.

Thus, we can apply Lemma 3 with q = 4,Kn = log n, γ = (log n)−1, σ = h1/2 and b = O(1)

to obtain that there exists a random variable Z̃∗ such that | supy
√
nP ∗n(φ̃i

(I)
y + φ̃i

(II)
y ) − Z̃∗| =

Op(n
−1/6h1/3 log n+ n−1/4h1/4 log7/4 n+ n−1/2 log2 n), which implies:

| sup
y
{B(y) +

√
nP ∗nφ

c
i (y)} − Z∗| = Op(n

−1/6h−2/3 log n+ n−1/4h−3/4 log7/4 n+ n−1/2h−1 log2 n)

= op(1)

where the last equality follows from the rate condition in Assumption 1(b) and Z∗ follows (con-

ditionally on the sample) the same distribution as supy{B(y) + GPφ
c
i (y)}, i.e. P ∗n1{Z∗ ≤ t} =

P1{supy{B(y) + GPφ
c
i (y)} ≤ t} for all t. Similarly, Theorem 2 and Lemma 3 imply also that

|P (Sconcn ≤ t)− P (supy{B(y) +GPφ
c
i (y)} ≤ t)| = o(1) for all t. These results imply:

|P (Sconcn ≤ cconc,∗α )− P (Z∗ ≤ cconc,∗α )| = |P (Sconcn ≤ cconc,∗α )− α)| = o(1)
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which concludes the proof.

Let us finish with a note about the result for the global statistic. Showing that S∗n −
√
nθ

converges weakly P -almost surely to a normal random variable involves very similar arguments to

the ones given above. Then, using this result and Theorem 1, we obtain the final result.
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