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Abstract

We obtain central limit theorems for data coming from a sparse, small world network, i.e. a

network with limited maximal degree and a relatively small (but growing) diameter, properties

encountered in many social and economic networks. We do not impose restrictions on the

strength of dependence between connected nodes and only assume that non-connected nodes

are statistically independent. The limit theorems hold conditionally on the network evolution

and the sufficient conditions vary between different dynamic network structures, from requiring

that the largest network component grows only marginally slower than the number of nodes,

N , to restricting it to grow slower than
√
N . These conditions translate into restrictions on

the constant of growth of the network diameter relative to the maximal degree using the bound

on the number of connected nodes from algebraic graph theory. We consider both means of

node- and edge-specific characteristics and show that for the latter imposing weak dependence

conditions may be necessary.
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1 Introduction

Many economic and social networks on top of being sparse exhibit a small-world property (Watts

& Strogatz (1998)), namely that the network distance between each pair of connected nodes is

small compared to the number of nodes in the network.1 Formally, a small-world network has a

diameter proportional to logN , where N is the number of nodes. We combine this restriction and

boundedness of the maximal degree of a node (i.e. sparsity) and ask a question if one can obtain a

central limit theorem (CLT) for a network data where observations from connected nodes (through

any path) can be arbitrarily dependent and only unconnected nodes are statistically independent.

The answer to our main question is affirmative under additional assumptions restricting the size

of the diameter relative to the maximal degree for any given N , or, put differently, restricting the

constant of proportionality relating the diameter to logN . We proceed with suggesting estimators

for the variance of the sample mean and investigate their performance in Monte Carlo simulations.

Although a simple block-variance estimator leads to considerable undercoverage of the resulting

confidence interval, the performance of a wild cluster bootstrap procedure is very promising and

we recommend using it for practical application of our results to hypothesis testing and building

confidence intervals.

We proceed with our analysis conditional on network evolution, thus we do not include uncer-

tainty coming from network formation. Hence, our results apply to stable networks with network-

mediated dependence as the main source of dependence. An example is a long-term friendship

network where we are interested in labour market outcomes. These outcomes are likely to have

been affected by network interactions (e.g. referrals) and our results suggest how to proceed with

inference on means of such outcomes.

The conditions needed to obtain a CLT vary between different network structures, in particular

on the number of growing components and the variation of their sizes. On one end, when the network

consist of many components growing at the same rate it is enough that the largest component grows

at a rate only marginally slower than N , on the other, when we have both large components growing

in size and many fixed size components, the largest component may need to grow at a rate smaller
1The “small-world” property often also includes the characteristic that the network graph is much more clustered

than a random graph (see e.g. Definition 4.1.3 in Watts (1999)). However, the latter property is not useful for the
purpose of providing CLT in our context so we do not discuss it.
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than
√
N .

In addition to node-specific means we also consider CLTs for edge-specific characteristics, where

we distinguish between flows, i.e. purely characteristics of edges, and contrasts, i.e. functions of

characteristics of nodes involved in an edge. We show that a CLT for the means of flows holds under

relatively mild and natural strengthening of conditions needed for node-specific means. However,

we require strong mixing conditions (with respect to network distance) to justify a CLT for the

means of contrasts, which is considerably stronger than other conditions we impose.

Kojevnikov et al. (2021) provide a CLT for node-specific means assuming weak dependence in

the form of ψ-dependence (see also Leung & Moon (2023)). They do not condition on the observed

network in their analysis and provide some primitive conditions and examples of network formation

processes consistent with ψ-dependence. They propose a HAC-type variance estimator. Leung

(2023) shows, however, that for many networks a cluster-robust inference may perform better. We

find that a wild cluster bootstrap works quite well in our setup. Similarly to our paper Ogburn

et al. (2024) provide a CLT conditional on the network formation process but only allow dependence

up to friends-of-friends, whereas we allow for any connected nodes (via any path) to be dependent,

thus generalising their results.

There is a large literature on obtaining limit theorems with spatial networks (see Jenish &

Prucha (2012), Kuersteiner & Prucha (2013), Kuersteiner (2019) among others). Although many

social and economic phenomena could be modelled using these networks, most social and economic

networks have relatively high clustering coefficients, which means common presence of cliques (see

Jackson (2008)). But Kojevnikov et al. (2021) demonstrate that spatial networks have limitations in

terms of accommodating nontrivial presence of cliques, thus restricting their usefulness in modelling

observed networks.

Our results can be seen as extending results on limit theorems with m-dependence, where m

can diverge to infinity, (Romano & Wolf (2000)) to the case where m is heterogenous and di-

verges at different rates for different groups (at the same time restricting dependence groups to

be non-overlapping). From this perspective, our work is also related to the literature on normal

approximations under local dependence (Baldi & Rinott (1989), Chen & Shao (2004)) with a dif-

ference that we allow the dependence neighbourhoods to grow with the sample size. Finally, our

results are closely related to results in the clustering literature (see e.g. MacKinnon et al. (2023)
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for a review) as the components in a network can be seen as different dependence clusters. In par-

ticular, Djogbenou et al. (2019) also use Lyapnuov condition to establish a CLT for clustered data

and their Assumption 3 restricts the rate of growth of the largest cluster much like our conditions.

However, unlike this article they do not consider specific cluster evolution structures nor they link

the conditions to small-world properties of the data.

Other recent articles on inference using network data include Bickel et al. (2011), Bickel et al.

(2013), Matsushita & Otsu (2023) among others.

2 Main idea

Let {Y1, . . . , YN} denote mean zero random variables corresponding to nodes in a network GN . We

are interested in the central limit theorem for the sample mean:

Y =
1

N

N∑
i=1

Yi

assuming that only nodes not connected through any network path have statistically independent

Yi’s and dependence between the remaining observations is not restricted.

Let the network consist of cN separated components of size Nc, c = 1, . . . , cN and the number

of non-zero correlations among the nodes in a component is of order N1+γc
c , γc ∈ [0, 1]. Then, if

V ar(Yi) <∞, we have:

V ar

(
N∑
i=1

Yi

)
∼

cN∑
c=1

N1+γc
c

Using this structure we provide sufficient conditions to verify the Lyapunov condition, which involve

bounds on the rates of growth of Nc’s. Next the bound on the maximal number of nodes in a sparse

network with a given maximal degree and diameter (Pineda-Villavicencio & Wood (2015)) is used

to translate these conditions to the parameters of a small world network.

For simplicity assume that the network consists of equal sized components, then Lyapunov’s
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condition is satisfied (see below) if:

(cN
N

) 2+δ
2

cN∑
c=1

N
(1+γc)

2+δ
2

c

(
∑cN

c=1N
γc
c )

2+δ
2

= c
− δ

2
N

converges to zero for any δ > 0. This requires that the number of components grows with N , in

other words, Nc/N → 0. Now the result from the algebraic graph theory bounds Nc by a quantity

of order d∆N
max, where dmax denotes the maximal degree and ∆N denotes the network’s diameter.

Since our conditions imply Nc is of order smaller than N , the results do not apply to networks

with a giant component involving almost all nodes or, alternatively, networks with a giant component

growing at rate N . This happens, for example, in the Facebook network where 99.91% of individuals

belong to the largest connected component (Ugander et al. (2011)). Still, our limit theorems would

apply if the giant component is of order arbitrarily smaller than N or if one can reasonably divide

the giant component into statistically independent sub-components satisfying this condition (e.g.

the links between some Facebook groups do not generate any cross-traffic, thus the groups can be

viewed as independent). Finally, we note that if one is willing to assume weak dependence between

connected nodes the results of Kojevnikov et al. (2021) would apply to such networks.

Recently, for a related problem, Kojevnikov & Song (2023) showed that consistent estimation

of the mean in clustered samples, without intra-cluster dependence restrictions, requires presence

of at least two large clusters, which implies that the largest cluster has to be of order smaller than

O(N). Thus, our findings are in line with that result.

3 Central limit theorems for small-world networks

Recall that dmax = maxi∈NN
di is the maximal degree in network GN , where NN = {1, 2, . . . , N}.

Define l(i, j) to be the network distance on the shortest path between i and j and set l(i, j) = ∞

if i and j are not connected by any network path. The diameter of network GN is now formally

defined as ∆N = maxi,j∈NN :l(i,j)<∞ l(i, j). All our results hold conditionally on network evolution

{GN}∞N=1 and, thus, take network formation as given.
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3.1 Node specific means

Consider the sample mean Y defined above, let Cc ⊂ NN enumerate nodes in network component

c and make the following assumptions:

Assumption 1. (a) dmax ≥ 2, dmax = O(1).

(b) ∆N ≤ loga(bN) for some constants a > 1, b > 0.

(c) l(i, j) = ∞ implies Yi ⊥ Yj.

(d) There exist {γc}cNc=1 : 0 ≤ γc ≤ 1, σ2 > 0, σ̄2 > 0, δ > 0 such that:

σ2N1+γc
c ≤ V ar

(∑
i∈Cc

Yi

)
≤ σ̄2N1+γc

c ,

E

(∑
i∈Cc

Yi

)2+δ

≤ K
2+δ
2

N N
(1+γc)

2+δ
2

c .

for all Cc and N , where KN = O(1).

Assumption 1(a) imposes sparsity of the network. The lower bound on the maximal degree

has a technical nature and rules out the case of networks formed only of connected pairs of nodes.

Note that sparsity is often imposed as a condition on average degree, namely 1/N
∑N

i=1 di = O(1),

which is implied by our condition. However, for all practical purposes both formulations can be

seen as equivalent. Assumption 1(b) imposes the small-world property, namely that the diameter

of the network is (at most) proportional to logN and part (c) states that unconnected nodes are

statistically independent.

The last condition has two parts. The first part assumes that the number of non-zero correlations

in a component of size Nc is a power function of Nc. Though, certainly imposing some structure on

the number of non-zero correlations, it accommodates a variety of cases, in particular, all correlations

being non-zero (γc = 1, σ2 < 1, σ̄2 > 1), the fraction of non-zero correlations being constant

(γc = 1, σ2 < 1, σ̄2 < 1) and decreasing toward zero with Nc (γc < 1). We note that the power form

is chosen for convenience and clarity of the CLT conditions and one may impose other correlation

structures and follow similar arguments as in our proofs to obtain alternative conditions.2 Also,
2As N1+γc

c does not need to be an integer, the bounds σ2, σ̄2 also accommodate rounding.

6



one does not need to know γc’s in practice and can assume γc = 1, for all c, for the purpose

of the conditions given below. Similarly, Romano & Wolf (2000) impose conditions that imply

V ar(
∑N

i=1 Yi) ∼ N1+γ for some −1 ≤ γ < 1. The second part of (d) assumes existence of moments

for the component-wise averages. For example, with δ = 2, this condition holds if Yi’s have finite

fourth moments and the number of nonzero within-component pairwise correlations is proportional

to N1+γc
c .

Further conditions needed to obtain a central limit theorem depend on the network evolution

scheme, in particular, how many growing network components there are and what their relative

growth rates are. Before we proceed, we need to clarify some notation. As the network evolves both

the existing components grow in size and new components arise. Thus, we will make the dependence

of the size of a component on the number of nodes explicit, i.e. write Nc(N), and keep in mind that

cN is a function of N . Without loss of generality, let the first component (c = 1) be a component

for which the number of non-zero correlations, i.e. N1+γ1
1 , grows at the fastest rate.

Theorem 1. Let {Yi}∞i=1 be a sequence of mean zero random variables and define B2
N = V ar(

√
NY ). Under

Assumption 1:

√
NY

BN
→D N(0, 1)

as N → ∞ (conditionally on network evolution) if either of the following holds:

(a) all components grow at the same rate, γc’s are all equal and logdmax−1 a > 1;

(b) all components grow (possibly at different rates) and we have for all c:

(i) Nc(N)1+γc

N1(N)1+γ1
→ 0 ⇒ Nc(N)

N1(N) → 0,

(ii) Nc(N)γc

N1(N)γ1 is weakly decreasing in N ,

(iii) there exists M <∞ such that
Nc

Ñ
(Ñ)

γ
Ñ

NcN
(N)γN <

(
N1(Ñ)
N1(N)

)γ1

for all (N, Ñ) such that cÑ = cN + 1 and

N > M, Ñ > M ,

(iv) logdmax−1 a > (1 + γc)
2+δ
δ .

(c) ck components grow with N and remaining cN − ck components have fixed size, ck is fixed and ∀c:

logdmax−1 a > 1 + γc,
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(d) ck components grow with N and remaining cN − ck components have fixed size, cN
N → s > 0, ck → ∞

and one of the following conditions is satisfied:

(i) logdmax−1 a > (1 + γc)
2+δ
δ ,∀c,

(ii) Nc(N)1+γc

N1(N)1+γ1
→ 0 ⇒ Nc(N)

N1(N) → 0, Nc(N)γc

N1(N)γ1 is weakly decreasing in N , there exists M < ∞ such

that
Nc

Ñ
(Ñ)

γ
Ñ

NcN
(N)γN <

(
N1(Ñ)
N1(N)

)γ1

for all (N, Ñ) such that cÑ = cN + 1 and N > M, Ñ > M , and

logdmax−1 a > 1 + γc,∀c,

(iii) components {1, . . . , ck} grow at the same rate, {γc}ckc=1 are all equal and logdmax−1 a > 1 +

γc
2+δ
δ ,∀c,

(e) ck components grow with N and remaining cN − ck components have fixed size, cN
N → 0 and either all

components {1, . . . , ck} grow at the same rate (with {γc}ckc=1 all equal) and c
(2+δ)/2
N /c1+δ

k → 0, or we

have for all c:

(i) Nc(N)1+γc

N1(N)1+γ1
→ 0 ⇒ Nc(N)

N1(N) → 0,

(ii) Nc(N)γc

N1(N)γ1 is weakly decreasing in N ,

(iii) there exists M <∞ such that
Nc

Ñ
(Ñ)

γ
Ñ

NcN
(N)γN <

(
N1(Ñ)
N1(N)

)γ1

for all (N, Ñ) such that cÑ = cN + 1 and

N > M, Ñ > M ,

(iv) logdmax−1 a > (1 + γc)
2+δ
δ when ck

cN
→ 1 or logdmax−1 a >

2+δ
δ otherwise.

A natural corollary, providing sufficient conditions for a CLT irrespective of network structure

and values of γc, follows:

Corollary 1. Let {Yi}∞i=1 be a sequence of mean zero random variables and define B2
N = V ar(

√
NY ). Under

Assumption 1:

√
NY

BN
→D N(0, 1)

as N → ∞ (conditionally on network evolution) if either of the following holds:

(a) all ck growing components (where ck ≤ cN ) satisfy:

(i) Nc(N)1+γc

N1(N)1+γ1
→ 0 ⇒ Nc(N)

N1(N) → 0,

(ii) Nc(N)γc

N1(N)γ1 is weakly decreasing in N ,

(iii) there exists M <∞ such that
Nc

Ñ
(Ñ)

γ
Ñ

NcN
(N)γN <

(
N1(Ñ)
N1(N)

)γ1

for all (N, Ñ) such that cÑ = cN + 1 and

N > M, Ñ > M ,

and logdmax−1 a >
2(2+δ)

δ ,
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(b) all ck growing components (where ck ≤ cN ) grow at the same rate and either logdmax−1 a > 1 + 2+δ
δ .

or c(2+δ)/2
N /c1+δ

k → 0.

The proof of Theorem 1 is given in the Appendix and follows the argument outlined in the

previous section. Note that the presence of the factor
√
N in the statement of theorem does not

imply that we obtain a square root rate of convergence as in general BN will not be O(1). The result

can be restated as a result conditional on common shocks affecting all the nodes in the network just

as in Kojevnikov et al. (2021), and would then apply to networks where there is some dependence

between unconnected nodes and the dependence can be modelled through observables.

Remark 1. Theorem 1 provides only sufficient conditions for the CLT theorem to hold. Still, it

covers a wide range of network evolution setups, including networks with a number of dominant

components and a number of small-sized components, a structure commonly encountered in social

networks.

Remark 2. The first condition in (b) requires that the component(s) with the fastest growing number

of non-zero between-nodes correlations is(are) also the fastest growing component(s). It is trivially

satisfied if all γc’s are equal. Additionally, note that together conditions (b)(i)-(ii) imply Nc(N)1+γc

N1(N)1+γ1
→

0 ⇔ Nc(N)
N1(N) → 0.

Remark 3. The conditions (b)(ii) and (b)(iii) require presence of a dominant component(s) in which

the number of non-zero correlations grows at the fastest rate, as well as that the new components

cannot grow at a faster rate that this dominant component. Note that this allows some components

to grow at the same rate.

Remark 4. The conditions imposed on logdmax−1 a restrict the scaling factor for the network di-

ameter relative to the maximal degree and require that, for given N , the diameter is not too large

relative to the maximal degree (in other words, 1/ log(a) cannot be too large). Part (a) assumes that

a > dmax − 1, which is also the case in part (e)(iv) if all moments of Y exist, i.e. δ = ∞. Finally,

note that the condition on the diameter in (d)(iii) is weaker than the one in (d)(i), but both become

equivalent to conditions in (b)(iv) and (c) when δ → ∞.

Remark 5. To the best of our knowledge, there is no precise formula linking the parameters of a

small world model like the Watts-Strogatz small world (SW) model (Watts & Strogatz (1998)) and
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the Barabási-Albert (BA) preferential attachment model (Barabási & Albert (1999)) to the constants

of proportionality in the diameter so it is difficult to translate our conditions on the constant a to the

parameters of these models.3 For a random graph G(N, p), the diameter is bounded when Np→ ∞

and Np→ 0 so our conditions on the size of a will be satisfied as long as N is large enough. When

Np → λ > 1 we have ∆N = logN/ log λ. In such random graph let us truncate the degree at some

dmax and, on top of that, artificially split the largest component, which is of order N in this case,

such that it grows at some slower rate. This way the generated network dynamics will fit our setup

in part (b) and condition (b)(iv) becomes log λ > log(dmax− 1)2+δ
δ supc≥1(1+ γc) which gives λ > 9

when dmax = 4, γc = 1, δ = ∞.

Remark 6. Let us compare our conditions to Assumption 3 in Djogbenou et al. (2019). Adapting

from their regression setup to a simple sample mean setup, if ηN denotes the rate of divergence

of V ar(
∑N

i=1 Yi), they require (see MacKinnon et al. (2023)):
(√

ηN
N

)−(2+δ)/(1+δ)
N1
N → 0. Let us

compare this condition to the ones in parts (a) and (c). For the former case, it is easy to derive

that both our and their conditions require cN → ∞, in other words N1/N → 0. For the latter case,

one can see from the proof of Theorem 1 that we practically need N2
1 /N → 0 (assuming γ1 = 1),

whereas their condition implies that we need:4

(
N2∑ck

c=1N
2
c + (cN − ck)O(1)

) 2+δ
2(1+δ) N1

N
=

 N− δ
2+δN

2(1+δ)
2+δ

1

N−1
∑ck

c=1N
2
c +O(1)


2+δ

2(1+δ)

to converge to zero, which is satisfied if N2(1+δ)/δ
1 /N → 0. Note that this is a stronger condition

(e.g. requires N3
1 /N → 0 when δ = 2) than the one we impose and both are equivalent only if all

the moments exist (i.e. δ = ∞).
3Even if these models are precisely defined. See Bollobás & Riordan (2002) for a discussion of the mathematical

definitions of small-world networks.
4Note that the second part of our Assumption 1(d) (with γc = 1) is implied by an equivalent of their Assumption

1 (see e.g. their Lemma A.2).
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4 Variance estimation

In this section we suggest estimators of the variance B2
N that can be used for inference together

with Theorem 1. Since Yi’s have zero mean:

B2
N =

1

N

N∑
i=1

N∑
j=1

E(YiYj)1{l(i, j) <∞}

thus a natural estimator arises:

B̂2
N =

1

N

N∑
i=1

N∑
j=1

YiYj1{l(i, j) <∞}.

Note that this estimator can be viewed as a block-variance estimator where the blocks correspond

to different unconnected components of the network and grow in size with N .

Theorem 2. Let {Yi}∞i=1 be a sequence of mean zero random variables, Assumptions 1 (a)-(c) hold

and E |Yi|4 is bounded for all i. Then:

V ar(B̂N −BN ) → 0.

as N → ∞ (conditionally on network evolution) if:

(a) all components grow at the same rate and logdmax−1 a > 3,

(b) all components grow (possibly at different rates) and logdmax−1 a > 4,

(c) ck components grow with N and remaining cN − ck components have fixed size, ck is fixed and

logdmax−1 a > 2,

(d) ck components grow with N and remaining cN − ck components have fixed size, ck → ∞ and

either logdmax−1 a > 4 or all ck components grow at the same rate and logdmax−1 a > 3.

The theorem implies consistency of the proposed estimator. As the estimator only uses cross-

products corresponding to observations in the same network component (alternatively, block) we

coin it the block-variance estimator. Recall that, when all components grow at the same rate with

N , Theorem 1 allows the size of the largest connected component to grow at a rate arbitrarily
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close to N but here the allowed rate is not higher than N1/3. Again, this is in line with findings

in Kojevnikov & Song (2023) for clustered samples. They show that one requires much stricter

conditions for variance estimation then for consistent discrimination of the mean.5

Although consistent, this estimator does not work well in practice if there is a lot of dependence

between Yi’s. In our Monte Carlo simulations we show that a confidence interval using the block-

variance estimator severely undercovers even for the sample size N = 10000 when there is strong

dependence between observations belonging to the same network component. This is in line with

simulations for a related HAC estimator in Kojevnikov et al. (2021) when the “autoregressive”

parameter is close to 0.5.

Since our setup is similar to the problem of estimating variance with a few large and growing in

size clusters (Cameron et al. (2008)), as an alternative to the block-variance estimator we consider

the wild clustered bootstrap and find that it performs much better in our Monte Carlo simulations.

Let c = 1, . . . , cN enumerate separate components of network GN . The bootstrap procedure is as

follows:

1. For each connected component draw vc = −1 or 1 with probability 1/2.

2. Calculate Y ∗
= 1

N

∑N
i=1 Yivc(i) where c(i) denotes the component that i belongs to.

3. Estimate B2
N by variance of

√
NY

∗ across bootstrap samples.

As an alternative one may consider randomisation tests of Canay et al. (2017).

5 Means of edge-specific characteristics

In this section we provide limit theorems for means of characteristics of edges between nodes.

Applications include means of input-output flows in production networks (see e.g. Acemoglu et al.

(2012)) or mean difference in socio-economic status between individuals belonging to the same local

community (see e.g. Chetty et al. (2022)). Note that the edge characteristics in these two examples

have a different structure – in the former they are nonparametric functions of a node pair (i, j)

(“flows”) whereas in the latter they are known functions of characteristics of a node (i, j) involved in
5Note that the Hansen and Lee condition (Hansen & Lee (2019)) that they require for consistent estimation of

variance is satisfied with clusters of size N1/3.
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an edge (“contrasts”). These differences lead to distinct analysis, in particular a CLT for contrasts

requires stronger conditions.

5.1 Flows

Let Yij denote the characteristic of an edge between nodes i and j and assume that there are no

flows between separate components, i.e. Yij = 0 if nodes i and j are not connected (by any path).

With this structure we effectively have cN components with Nc,f = Nc(Nc − 1) outcome pairs Yij

and the analysis resembles the one for node-specific means, but now the effective sample size is

Nf =
∑cN

c=1Nc,f . We can define the edge-specific mean by:

Y f =
1

Nf

N∑
i=1

∑
j ̸=i

Yij1{l(i, j) <∞}.

Similarly to node-specific means we will assume that flows in separate network components are

statistically independent and modify Assumption 1(d) to the present context:

Assumption 1(c)’. l(i, k) = ∞ implies Yij ⊥ Ykl.

Assumption 1(d)’. There exist {γc}cNc=1 : 0 ≤ γc ≤ 1, σ2 > 0, σ̄2 > 0, δ > 0 such that:

σ2N1+γc
c,f ≤ V ar

∑
i∈Cc

∑
j∈Cc:j ̸=i

Yij

 ≤ σ̄2N1+γc
c,f ,

E

∑
i∈Cc

∑
j∈Cc:j ̸=i

Yij

2+δ

≤ K
2+δ
2

N N
(1+γc)

2+δ
2

c,f .

for all Cc and N , where KN = O(1).

We have the following result:

Theorem 3. Let {Yij}∞i,j=1 be a sequence of mean zero random variables and define B2
N,f =

V ar(
√
NfY f ). Under Assumptions 1 (a), (b), 1(c)’ and 1(d)’ :

√
NfY f

BN,f
→D N(0, 1)

as N → ∞ (conditionally on network evolution) if
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(a) condition (a) in Theorem 1 holds,

(b) conditions (b)(i)-(iii) in Theorem 1 hold and logdmax−1 a > 2(1 + γc)
2+δ
δ ,∀c,

(c) condition (c) in Theorem 1 holds with logdmax−1 a > 2(1 + γc),∀c,

(d) condition (d) in Theorem 1 holds with (i)-(iii) replaced by:

(i)’ Nc(N)1+γc

N1(N)1+γ1
→ 0 ⇒ Nc(N)

N1(N) → 0, Nc(N)γc

N1(N)γ1 is weakly decreasing in N , there exists M <∞ such

that
Nc

Ñ
(Ñ)

γ
Ñ

NcN
(N)γN <

(
N1(Ñ)
N1(N)

)γ1
for all (N, Ñ) such that cÑ = cN + 1 and N > M, Ñ > M ,

and logdmax−1 a > 2(1 + γc), ∀c,

(ii)’ components {1, . . . , ck} grow at the same rate, {γc}ckc=1 are all equal and logdmax−1 a >

2(1+δ
δ + γc

2+δ
δ ),∀c,

(e) condition (e) in Theorem 1 holds with part (iv) replaced by: logdmax−1 a > 2(1 + γc)
2+δ
δ when

ck
cN

→ 1 or logdmax−1 a >
2(2+δ)

δ ,∀c.

Theorem 3 can be used for inference once an estimator of BN,f is available. One would expect

that an analogous estimator to the block-variance estimator or a wild cluster bootstrap described

in Section 4 would work by the same reasoning as for node-specific means. Note that Theorem

3 strengthens conditions of Theorem 1 due to the fact that in the current setup each network

"component" contains (up to) Nc(Nc − 1) correlated elements compared to Nc before.

5.2 Contrasts

Let h be a symmetric function and define the edge-specific mean as:6

Y c =
1

N(N − 1)

N∑
i=1

∑
j ̸=i

h(Yi, Yj)1{l(i, j) <∞}.

A leading example would be h(Yi, Yj) = |Yj−Yi| with Yi denoting a measure of socio-economic status

like income (Chetty et al. (2022)), in which case the statistic would measure average differences in

income among neighbourhoods (“economic connectedness”) and our results would provide a starting
6The definition could be extended to functions of characteristics of triples, quadruples etc. of nodes, which can be

used to study clique characteristics. The treatment of such statistics would follow similar lines. Hence, for the sake
of exposition, we do not analyse them in detail.
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point for conducting inference which takes into account network-dependence between connected

units. We point out that, when there is non-negligible dependence between connected individuals,

even large sample sizes may not guarantee statistical significance of the findings as in such case the

“effective” sample size may be small.

Under stationarity of Yi we get the following Hoeffding decomposition:

√
NY c

BN,c
= B−1

N,c

1√
N

N∑
i=1

h1(Yi)
Nc(i)− 1

N − 1
+B−1

N,c

√
N

N(N − 1)

∑
i<j

h2(Yi, Yj)1{l(i, j) <∞}, (1)

where h1(y) = EY [h(y, Y )], h2(y1, y2) = h(y1, y2) − h1(y1) − h1(y2), Nc(i) denotes the number of

nodes in the component to which i belongs and B2
N,c = V ar

(
1√
N

∑N
i=1 h1(Yi)

Nc(i)−1
N−1

)
. In order

to obtain a CLT we need to show that the second term in the decomposition converges to zero in

probability and show that a CLT holds for the triangular array
{
h1(Yi)

Nc(i)−1
N−1

}
i,N

.

The variance of the second term in (1) (up to a scaling factor) can be written as:

cN∑
c=1

∑
i∈Cc

∑
j∈Cc,j ̸=i

∑
k∈Cc

∑
l∈Cc,l ̸=j

E[h2(Yi, Yj)h2(Yk, Yl)]

and under Assumption 1(d) this term is of order
∑cN

c=1N
3+γc
c , which is the same as the order of

B2
N,c. This shows a difficulty in obtaining a central limit theorem for contrasts without some further

restrictions on dependence between Yi’s. Thus, we impose a strong mixing condition with respect

to the network distance l(·, ·) following e.g. Kojevnikov et al. (2021).

For σ-fields F ,G, let α(F ,G) = supF∈F ,G∈G |P (F ∩G)−P (F )P (G)| and define the component-

specific mixing coefficients by:

αc,N (s) = sup{α(σ(YA), σ(YB)) : A,B ⊂ Cc, l(A,B) ≥ s}

where YA = {Yi}i∈A and l(A,B) = mini∈Amini′∈B l(i, i
′). Further, note that the data {Yi}Ni=1 is α-

mixing with αN (s) = maxc∈{1,...,cN} αc(s). Let cNc(s,m; k) be the quantity capturing the network’s

denseness defined on p. 891 in Kojevnikov et al. (2021). We impose the following assumption.

Assumption 2. For all c ∈ N, {Yi}i∈Cc is a stationary strong mixing process with E[h(Yi, Yj)] = 0

and we have for p > 4:
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(a) h is a bounded Lipchitz function satisfying: E|h(Yi, Yj)|p <∞.

(b) 1
N3B2

N,c

∑cN
c=1Nc

∑
s≥0 cNc(s,Nc; 2)αc(s) → 0.

(c) There exists a positive sequence mN such that for k = 1, 2:

1

N
k
2B2+k

N,c

∑
s≥0

cN (s,mN ; k)αN (s)
1− 2+k

p → 0,

N3/2αN (mN )
1− 1

p

BN,c
→ 0.

Remark 7. Assumptions (a) and (c) are needed for the asymptotic normality of the first term

in (1). Assumptions (a) and (b) are used to show that the second term vanishes. Note that if

p → ∞ and cNc(s,Nc, 2) ≤ cN (s,mN , 2), then (c) implies (b), however, in general, cN (s,m, 2) is

not monotone in the second argument so this does not follow.

Remark 8. Lipschitz continuity in part (a), though relatively strong, is satisfied trivially for our

leading example of h(y1, y2) = |y2 − y1|.

Remark 9. Using the techniques in the proof of Theorem 1 it is easy to derive that the following

set of conditions is sufficient for part (b):

logdmax−1 a > 1/2,

cN∑
c=1

∑
s≥0

cNc(s,Nc; 2)αc(s) = O(B2
N,c).

We are now ready to state the CLT theorem for contrasts.

Theorem 4. Under Assumptions 1(c) and 2 we have:

√
NY c

BN,c
→D N(0, 1)

as N → ∞ (conditionally on network evolution).

Compared to the previous results, this theorem imposes significantly stricter assumptions since

restrictions on the structure of the network and the largest component do not suffice here, as
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mentioned above. The small-world property and sparsity conditions will affect the network denseness

function, cN (s,m; k). However, establishing a precise link between the diameter, maximal degree

and this function is a question for further research.

6 Monte Carlo simulations

We consider two network generating algorithms: the Watts-Strogatz small world (SW) model (Watts

& Strogatz (1998)) and the Barabási-Albert (BA) preferential attachment model (Barabási & Albert

(1999)). The first model generates networks with diameters proportional to logN whereas the second

model produces diameters proportional to logN or logN/ log logN depending on the parameters

(Bollobás & Riordan (2004)). For most parameter values the BA model implies that the maximal

degree of a node grows with N , thus we further “prune” the graph to make sure that the maximal

degree is stable: (1) we start with a node with the highest degree and randomly erase superfluous

edges, (2) check if the maximal degree satisfies the imposed bound, (3) if not, we go back to step

(1) and repeat the procedure.

In terms of the architecture of the network, we consider both (approx.) equal-sized components

and growing + fixed components. For the former case we start with four connected components

for N = 500 and add one component for each increase in the sample size above that, hence ending

up with seven components for N = 10000. For the latter case, we allocate 30% of all nodes to the

fixed components and we draw fixed component sizes from the binomial distribution with mean size

of 5 nodes and maximal size of 10. We start with two growing components when N = 500 and

add one more for each increase in the sample size, such that these components grow (approx.) at

rates N{0.45,0.25,0.15,0.1,0.1}, respectively. We perform 1000 MC repetitions and use 1000 replications

for the bootstrap procedures. Figure 1 shows four examples of networks generated by SW and BA

models (top panel: equal components, bottom panel: growing + fixed).
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Figure 1: Examples of Monte Carlo designs, SW model (left) and BA model (right), N = 500.
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6.1 Node-specific means

Let C(i) denote the network component containing node i and Nc(i), as before, denote the number

of connected nodes in this component. The data is generated from the following process

Yi =
1√

Nc(i)− 1

∑
j ̸=i,j∈Cc(i)

εj

where εj ’s are i.i.d., drawn from a standardised uniform distribution. In other words, node i’s

outcome is equal to the average of ε’s of all the nodes that i is connected to, which implies strong

dependence between outcomes belonging to the same network component. We consider coverage of

confidence intervals built using known variance (“oracle”) , block-variance estimator B̂N (“estim.”)

and wild cluster bootstrap (“boot.”) introduced in Section 4.

Table 1 contains the simulation result for means of node-specific characteristics. The BA model

is parametrised by: m – the number of edges added in each step of building the graph, za - appeal

of nodes that do not have any connections. The algorithm for building an SW network starts with a

circle (or, more generally, lattice) graph and “rewires” some of the connections between neighbouring

nodes to some more distant nodes, thus is parametrised by: p - probability of rewiring an edge, k

- the number of edges per vertex in the initial circle graph. Different values of these parameters

produce graphs with different maximal degrees and diameters.

When we use the known variance the coverage is close to the nominal 95% level across the designs

and parameter values, thus confirming that the CLT holds for small world networks. However, once

we use the estimated variance B̂2
N the coverage deteriorates substantially, with values somehow close

to the nominal values only in the three top left panels of Table 1 for which the networks are pretty

sparse with a small degree and a large diameter. This shows the difficulty of precisely estimating

the variance with strong dependence between observations in a network setting, a phenomenon

also occurring in Kojevnikov et al. (2021) (see their simulation results with large values of the

“autoregressive” parameter γ).7

The wild cluster bootstrap works reasonably well for networks with equal components, besides

the small sample size N = 500, with coverage values only slightly above the nominal 95% across all
7Kojevnikov et al. (2021) use a HAC estimator with kernel weighting but the idea behind our B̂N and their

estimator is similar.
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Table 1: Simulated coverage, node-specific means, 95% level

BA model SW model
Coverage Coverage

N m za dmax ∆N oracle estim. boot. p k dmax ∆N oracle estim. boot.

Equal Components

500 1 0 10 12 0.954 0.844 0.988 0.05 2 6 12 0.958 0.814 0.998
1000 1 0 10 11 0.964 0.930 0.954 0.05 2 6 15 0.950 0.854 0.975
5000 1 0 10 14 0.938 0.941 0.954 0.05 2 7 20 0.949 0.860 0.978

10000 1 0 10 16 0.952 0.950 0.942 0.05 2 7 20 0.960 0.897 0.972

500 1 1 10 16 0.954 0.869 0.983 0.05 5 13 5 0.949 0.836 0.994
1000 1 1 10 16 0.947 0.870 0.968 0.05 5 13 6 0.932 0.862 0.987
5000 1 1 10 18 0.957 0.928 0.955 0.05 5 14 7 0.954 0.876 0.965

10000 1 1 10 20 0.956 0.937 0.956 0.05 5 15 8 0.954 0.893 0.968

500 1 2 10 15 0.942 0.850 0.979 0.05 10 24 3 0.943 0.811 0.998
1000 1 2 10 17 0.955 0.869 0.951 0.05 10 24 4 0.946 0.828 0.983
5000 1 2 10 25 0.950 0.923 0.969 0.05 10 26 5 0.945 0.858 0.971

10000 1 2 10 21 0.941 0.920 0.968 0.05 10 26 5 0.941 0.904 0.957

500 2 0 20 6 0.959 0.818 0.994 0.10 2 8 9 0.947 0.815 0.995
1000 2 0 20 7 0.948 0.847 0.977 0.10 2 7 10 0.954 0.851 0.986
5000 2 0 20 10 0.956 0.876 0.967 0.10 2 8 14 0.951 0.862 0.968

10000 2 0 20 10 0.951 0.860 0.958 0.10 2 9 15 0.957 0.886 0.969

500 2 1 20 7 0.953 0.801 0.999 0.10 5 14 4 0.951 0.803 0.997
1000 2 1 20 7 0.950 0.831 0.980 0.10 5 14 5 0.943 0.836 0.970
5000 2 1 20 10 0.959 0.879 0.971 0.10 5 16 6 0.954 0.857 0.962

10000 2 1 20 10 0.948 0.875 0.970 0.10 5 16 7 0.961 0.883 0.963

500 2 2 20 6 0.951 0.809 0.995 0.10 10 25 3 0.953 0.800 0.995
1000 2 2 20 7 0.952 0.854 0.983 0.10 10 25 4 0.942 0.855 0.975
5000 2 2 20 9 0.955 0.884 0.968 0.10 10 28 4 0.946 0.874 0.975

10000 2 2 20 10 0.955 0.888 0.974 0.10 10 30 5 0.951 0.873 0.963

Growing + Fixed

500 1 0 10 10 0.942 0.895 0.964 0.05 2 6 13 0.941 0.673 0.999
1000 1 0 10 13 0.945 0.902 0.963 0.05 2 7 15 0.950 0.782 0.996
5000 1 0 10 12 0.955 0.938 0.959 0.05 2 8 19 0.949 0.768 0.996

10000 1 0 10 13 0.958 0.953 0.956 0.05 2 7 21 0.949 0.774 0.994

500 1 1 10 11 0.952 0.908 0.968 0.05 5 13 6 0.952 0.670 0.997
1000 1 1 10 14 0.953 0.917 0.955 0.05 5 14 6 0.947 0.768 0.997
5000 1 1 10 16 0.945 0.938 0.959 0.05 5 14 8 0.949 0.789 0.998

10000 1 1 10 17 0.953 0.932 0.952 0.05 5 15 9 0.951 0.796 0.992

500 1 2 10 16 0.956 0.712 0.999 0.05 10 24 4 0.940 0.650 0.999
1000 1 2 10 17 0.949 0.818 0.990 0.05 10 24 4 0.948 0.772 0.998
5000 1 2 10 23 0.943 0.918 0.965 0.05 10 27 5 0.941 0.786 0.997

10000 1 2 10 22 0.941 0.934 0.965 0.05 10 26 6 0.964 0.796 0.991

500 2 0 20 7 0.953 0.661 0.999 0.10 2 7 10 0.953 0.658 0.996
1000 2 0 20 8 0.956 0.804 1.000 0.10 2 7 10 0.949 0.792 0.998
5000 2 0 20 9 0.954 0.788 0.994 0.10 2 8 14 0.948 0.801 0.998

10000 2 0 20 10 0.950 0.790 0.994 0.10 2 7 17 0.956 0.816 0.987

500 2 1 20 7 0.958 0.670 0.999 0.10 5 15 5 0.945 0.668 0.997
1000 2 1 20 7 0.936 0.762 0.993 0.10 5 15 5 0.951 0.761 0.998
5000 2 1 20 10 0.953 0.785 0.997 0.10 5 15 7 0.959 0.798 0.998

10000 2 1 20 10 0.951 0.799 0.988 0.10 5 16 7 0.963 0.820 0.994

500 2 2 20 6 0.947 0.658 0.997 0.10 10 26 3 0.956 0.677 0.998
1000 2 2 20 7 0.961 0.791 0.997 0.10 10 26 4 0.954 0.761 0.995
5000 2 2 20 9 0.956 0.786 0.997 0.10 10 28 5 0.941 0.763 0.999

10000 2 2 20 9 0.963 0.810 0.991 0.10 10 29 4 0.960 0.957 0.957

Note: 1000 Monte Carlo simulations, 1000 bootstrap replications. “Oracle” – known variance, “estim.” – variance
estimator B̂N , “boot.” – wild cluster bootstrap.
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designs. However, we also see that it provides very conservative inference when we have unequal-

sized components, especially for the SW model. Still it provides valid inference, thus we recommend

using the wild cluster bootstrap for data coming from sparse small world networks.8

6.2 Edge-specific means

As the case of means of flows discussed in Section 5.1 is very similar to the case of node-specific

means, we only run simulations for the means of contrasts. As Theorem 4 requires weak dependence

within components, we follow the design in Kojevnikov et al. (2021) and generate outcomes as:

Yi =
∑
s≥0

ρs

|Li(s)|
∑

j∈Li(s)

εj

where Li(s) denotes the set of nodes at distance s from i, we set ρ = 0.5 and again ε follows the

standardised uniform distribution.9 Further, following our main example, we take:

h(Yi, Yj) = |Yj − Yi|.

As variance estimation in the U-statistic setup is more involved than with simple means and we do

not provide variance estimators above, we only provide coverage values with known variance.

Table 2 shows that for all specifications of the network formation model the coverage probabilities

are close to 95% even for N = 500, which is in line with our CLT in Theorem 4.

7 Conclusion

Many social and economic networks are sparse and are small-world. We show that data coming

from such networks satisfies a central limit theorem under the additional assumption restricting

the constant of proportionality of the diameter to logN , even without imposing weak dependence

between connected nodes.

Our result can be seen as a “possibility” theorem showing that a CLT applies quite generally
8The overcoverage noted here is interesting in comparison with the simulation results in Djogbenou et al. (2019),

which show in a regression setup that the wild cluster bootstrap tests tend to undercover in most of the cases of
clustering.

9We have also ran simulations with normal errors and the results are very similar. See Appendix G.
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Table 2: Simulated coverage, edge-specific means (contrasts), 95% level

BA model SW model
Coverage Coverage

N m za dmax ∆N oracle p k dmax ∆N oracle

Equal Components

500 1 0 10 10 0.946 0.05 2 6 12 0.952
1000 1 0 10 11 0.939 0.05 2 6 15 0.939
5000 1 0 10 13 0.951 0.05 2 7 20 0.958

10000 1 0 10 14 0.933 0.05 2 7 20 0.950

500 1 1 10 16 0.953 0.05 5 13 5 0.956
1000 1 1 10 16 0.944 0.05 5 13 6 0.935
5000 1 1 10 23 0.945 0.05 5 14 7 0.934

10000 1 1 10 19 0.937 0.05 5 15 8 0.937

500 1 2 10 14 0.951 0.05 10 24 3 0.957
1000 1 2 10 15 0.937 0.05 10 24 4 0.950
5000 1 2 10 18 0.934 0.05 10 26 5 0.948

10000 1 2 10 21 0.95 0.05 10 26 5 0.937

500 2 0 20 7 0.946 0.1 2 8 9 0.945
1000 2 0 20 8 0.941 0.1 2 7 10 0.944
5000 2 0 20 11 0.953 0.1 2 8 14 0.945

10000 2 0 20 11 0.947 0.1 2 9 15 0.944

500 2 1 20 7 0.962 0.1 5 14 4 0.961
1000 2 1 20 7 0.944 0.1 5 14 5 0.930
5000 2 1 20 9 0.929 0.1 5 16 6 0.952

10000 2 1 20 11 0.957 0.1 5 16 7 0.948

500 2 2 20 6 0.954 0.1 10 25 3 0.954
1000 2 2 20 7 0.950 0.1 10 25 4 0.954
5000 2 2 20 9 0.948 0.1 10 28 4 0.940

10000 2 2 20 9 0.956 0.1 10 30 5 0.948

Growing + Fixed

500 1 0 10 10 0.958 0.05 2 6 12 0.961
1000 1 0 10 13 0.957 0.05 2 6 15 0.952
5000 1 0 10 12 0.950 0.05 2 7 20 0.957

10000 1 0 10 13 0.951 0.05 2 7 20 0.957

500 1 1 10 11 0.947 0.05 5 13 5 0.952
1000 1 1 10 14 0.965 0.05 5 13 6 0.950
5000 1 1 10 16 0.954 0.05 5 14 7 0.957

10000 1 1 10 17 0.946 0.05 5 15 8 0.943

500 1 2 10 16 0.947 0.05 10 24 3 0.952
1000 1 2 10 17 0.946 0.05 10 24 4 0.948
5000 1 2 10 23 0.942 0.05 10 26 5 0.944

10000 1 2 10 22 0.936 0.05 10 26 5 0.940

500 2 0 20 7 0.943 0.1 2 8 9 0.947
1000 2 0 20 8 0.942 0.1 2 7 10 0.934
5000 2 0 20 9 0.953 0.1 2 8 14 0.954

10000 2 0 20 10 0.944 0.1 2 9 15 0.954

500 2 1 20 7 0.951 0.1 5 14 4 0.959
1000 2 1 20 7 0.946 0.1 5 14 5 0.947
5000 2 1 20 10 0.962 0.1 5 16 6 0.958

10000 2 1 20 10 0.952 0.1 5 16 7 0.955

500 2 2 20 6 0.947 0.1 10 25 3 0.943
1000 2 2 20 7 0.965 0.1 10 25 4 0.959
5000 2 2 20 9 0.948 0.1 10 28 4 0.963

10000 2 2 20 9 0.941 0.1 10 30 5 0.939

Note: 1000 Monte Carlo simulations, 1000 bootstrap replications. “Oracle” – known variance.
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to network-dependent data with the largest component of size Nα where α < 1, so imposing

weak dependence conditions within connected components seem not strictly necessary here. We

also provide some evidence that the wild cluster bootstrap can be used successfully (though, anti-

conservatively) to estimate the variance in this strongly dependent network setting.

We consider a simple setup of undirected unweighted networks but the results should extend

naturally to directed networks and networks in which we can assign (bounded) weights to covariances

of characteristics between two connected nodes. If these weights would vanish or decrease sufficiently

fast between large connected components, then one could potentially be able to extend our results

to networks with a giant component of size O(N), i.e. larger than allowed in our current setup.
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Appendix

A Proofs

A.1 Useful lemmas

Lemma 1. (Pineda-Villavicencio, Wood (2015)) Every graph with minimum degree dmin, maximum

degree dmax and diameter ∆N has at most 2dmin(dmax − 1)∆N−1 + 1 vertices.

Lemma 2. (Kojevnikov et al. (2021), Prop. 2.2) Let f and g belong to a collection of bounded

Lipschitz real functions and sets (A,B) of nodes be such that l(A,B) ≥ s. If {Yi,N}∞i=1 is a strong

mixing triangular array (w.r.t. network distance l(·, ·)) with mixing coefficients {αN (s) : s ≥ 0},

then we have:

|cov(YA, YB)| ≤ 4∥f∥∞∥g∥∞αN (s).

B General CLT for networked data

The following theorem gives high level conditions for the networked data to satisfy CLT. Our main

theorem, Theorem 1, will follow from verifying these conditions for different network evolution

structures.

Theorem 5. Let {Yi}∞i=1 be a sequence of mean zero random variables and define B2
N = V ar(

√
NY ).

Let Assumption 1 hold and:

(a) B2
N ≥ LN

1
cN

∑cN
c=1N

γc
c ,

(b) KN
LN

= O(1),

(c)
(
cN
N

) 2+δ
2

∑cN
c=1 N

(1+γc)
2+δ
2

c

(
∑cN

c=1 N
γc
c )

2+δ
2

→ 0.

Then we have:

√
NY

BN
→D N(0, 1)

as N → ∞ (conditionally on network evolution).
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Proof. Firstly, note that under Assumption 1(c) partial sums from different network components

are independent and we can write B2
N = 1/N

∑cN
c=1 V ar

(∑
i∈Cc

Yi
)
. Thus, in order to obtain a CLT

it will suffice to verify Lyapunov’s condition for the partial sums, i.e. show that

∑cN
c=1E

∣∣∑
i∈Cc

Yi
∣∣2+δ

(NBN )2+δ
→ 0.

But this follows from Assumption 1(d) and the conditions of the theorem by:

∑cN
c=1E

∣∣∑
i∈Cc

Yi
∣∣2+δ

(NBN )2+δ
≤
K

2+δ
2

N

∑cN
c=1N

(1+γc)
2+δ
2

c(
LN

N
cN

∑cN
c=1N

γc
c

) 2+δ
2

=

(
KN

LN

) 2+δ
2 (cN

N

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c

(
∑cN

c=1N
γc
c )

2+δ
2

= o(1)

C Proof of Theorem 1

As mentioned in the text Nc’s are really a function of N but, to economise on notation, we will only

make this explicit when necessary.

Part (a). We have Nc = N1,∀c, and cNN1/N = 1. Using that and Assumption 1(d) we obtain:

B2
N

1
cN

∑cN
c=1N

γc
c

≥ σ2N1+γ1
1 cN

NNγ1
1

=
σ2N1cN
N

= O(1) (2)

which verifies conditions (a) and (b) of Theorem 5 with LN = O(1).

With equal rates we have:

(cN
N

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c

(
∑cN

c=1N
γc
c )

2+δ
2

=
cNN

2+δ
2

1

N
2+δ
2

= c
− δ

2
N

which converges to zero if the number of components grows, which is implied by N1/N → 0.

Finally, using the bound in Lemma 1 and taking logdmax−1, we get that N1/N → 0 is implied

by

logaN − logdmax−1N < 0
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which can be rewritten as:

logN
log(dmax − 1)− log a

log a log(dmax − 1)
< 0.

This inequality is implied by the condition in part (a) of Theorem 1. Thus, the result follows from

Theorem 5.

Part (b). Recall that N1 denotes a component for which the number of non-zero correlations

grows at the fastest rate, i.e. N1+γc
c /N1+γ1

1 → 0 or → 1 for all c > 1. For sufficiently large N , we

get N/cN ≤ N1 under condition (b)(i). Thus, we have:

B2
N

1
cN

∑cN
c=1N

γc
c

≥ O(1)
cNN1

N

∑cN
c=1N

1+γc
c

N1
∑cN

c=1N
γc
c

≥ O(1)

∑cN
c=1

N1+γc
c

N
1+γ1
1∑cN

c=1
Nγc

c

N
γ1
1

Note that both the numerator and the denominator in the last expression are positive so the ratio

will be bounded away from zero if the sum in the denominator converges.

In order to properly analyse the convergence of the series, let us define the "jump points" in cN

by NJ
c = {N : cN = cN−1 + 1, cN = c}. Now by condition (b)(ii) we have:

cN∑
c=1

Nc(N)γc

N1(N)γ1
≤

cN∑
c=1

Nc(N
J
c )

γc

N1(NJ
c )

γ1

which gives an infinite sum indexed by c. For this sum to be finite we apply the ratio test (see e.g.

Theorem 3.34 in Rudin (1976)), which requires:

lim
cN→∞

NcN+1(N
J
cN+1)

γcN+1

N1(NJ
cN+1)

γ1
/
NcN (N

J
cN

)γcN

N1(NJ
cN

)γ1
< 1.

This latter condition is satisfied (for sufficiently large N) by condition (b)(iii). This verifies assump-

tions (a) and (b) of Theorem 5 with LN = O(1).

In order to verify condition (c) of Theorem 5 note that:

(cN
N

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c

(
∑cN

c=1N
γc
c )

2+δ
2

≤
(cN
N

) 2+δ
2 cNN

(1+γ1)
2+δ
2

1

c
2+δ
2

N N ϵ 2+δ
2

≤ cN
N

N (1+γ1)
2+δ
δ

1

N

 δ
2
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for some ϵ > 0 by the fact that all components are growing at some positive rate. The last expression

converges to zero since cN/N → 0 and condition (b)(iv) implies that N (1+γ1)
2+δ
δ

1 /N → 0 by the

same reasoning as for part (a).

Part (c). Here we have the number of fixed size components equal cN − ck ≤ N −
∑ck

c=1Nc

which together with Nc/N → 0 implies that cN/N = O(1). Furthermore:

B2
N

1
cN

∑cN
c=1N

γc
c

≥ O(1)

∑ck
c=1N

1+γc
c + cN − ck∑ck

c=1N
γc
c + (cN − ck)N̄u

= O(1)

∑ck
c=1

N1+γc
c
N +O(1)∑ck

c=1
Nγc

c
N +O(1)

≥ O(1)

where N̄u denotes an upper bound on the number of nodes in a fixed size component. The last

inequality follows from N1+γc
c /N → 0, which is implied by the condition in part (c) of the theorem

(see reasoning in the proof of part (a)).

Similarly:

(cN
N

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c

(
∑cN

c=1N
γc
c )

2+δ
2

≤ O(1)

∑ck
c=1

(
N1+γc

c
N

) 2+δ
2

+O(N− δ
2 )(∑ck

c=1
Nγc

c
N +O(1)

) 2+δ
2

→ 0

which completes the proof of this part.

Part (d). As in the previous part:

B2
N

1
cN

∑cN
c=1N

γc
c

≥ O(1)

∑ck
c=1

N1+γc
c
N +O(1)∑ck

c=1
Nγc

c
N +O(1)

≥ O(1)

Note that ck/N → 0 and we have (cN − ck)/N ≤ (1 −
∑ck

c=1Nc/N) ≤ 1. This together with

(cN − ck)/N → s > 0 implies that
∑ck

c=1Nc/N = O(1). Since
∑ck

c=1N
1+γc
c /N ≥

∑ck
c=1Nc/N ≥∑ck

c=1N
γc
c /N , we obtain B2

N
N
cN

∑cN
c=1 N

γc
c

≥ O(1).

Moreover:

(cN
N

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c

(
∑cN

c=1N
γc
c )

2+δ
2

≤ O(1)

∑ck
c=1

(
N1+γc

c
N

) 2+δ
2

+O(N− δ
2 )(∑ck

c=1
Nγc

c
N +O(1)

) 2+δ
2

(3)

as in the previous part, however now the expression involves infinite sums. Using the fact that the
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slowest growing component grows at a rate N ϵ for some ϵ > 0 we can bound ck ≤ N1−ϵ:

ck∑
c=1

(
N1+γc

c

N

) 2+δ
2

≤ N1−ϵ

(
N1+γ1

1

N

) 2+δ
2

≤

N (1+γ1)
2+δ
δ

1

N

 δ
2

and the last expression converges to zero by condition (d)(i), which finalises verification of (c) in

Theorem 5.

Alternatively, condition (c) in Theorem 5 will be satisfied if
∑ck

c=1

(
N1+γc

c
N

) 2+δ
2

= o(1). First,

note that logdmax−1 a > 1 + γc,∀c, implies that N1+γ1
1 /N → 0 and we can write:

ck∑
c=1

(
N1+γc

c

N

) 2+δ
2

≤

(
N1+γ1

1

N

) δ
2 ck∑
c=1

N1+γc
c

N
= o(1)

ck∑
c=1

N1+γc
c

N

so it is enough to show that the latter sum converges using the ratio test. To show that first note

that for N large enough we have:

ck∑
c=1

N1+γc
c

N
=

ck∑
c=1

N1+γc
c

N1+γ1
1

N1+γ1
1

N
≤

ck∑
c=1

N1+γc
c

N1+γ1
1

=

ck∑
c=1

Nc

N1

Nγc
c

Nγ1
1

≤
ck∑
c=1

Nγc
c

Nγ1
1

Now
∑ck

c=1
Nγc

c

N
γ1
1

= O(1) follows from the same argument as the one in part (b).

Finally, if all ck components grow at the same rate N1, the expression in (3) simplifies to:

O(1)

ck

(
N

1+γ1
1
N

) 2+δ
2

+O(N− δ
2 )(

ck
N

γ1
1
N +O(1)

) 2+δ
2

and now ck ∼ N/N1 which gives:

ck

(
N1+γ1

1

N

) 2+δ
2

≃

N1+γ1( 2+δ
δ )

1

N

 δ
2

and the last expression converges to zero under condition (d)(iii).

Part (e). Here we have cN/N → 0. We will distinguish three cases: 1) ck components grow at

the same rate, 2) ck/cN → 1, 3) ck/cN → 0.

1) Consider the case when all Nc’s are equal. Note that we have N/cN ≤ N1 and ckN1/N → 1,
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which implies ckN
1+γ1
1 /N ≥ O(1). Thus:

B2
N

1
cN

∑cN
c=1N

γc
c

≥ O(1)
ckN

1+γ1
1 + (cN − ck)O(1)

ckN
1+γ1
1 + N

cN
(cN − ck)O(1)

= O(1)
1 +

(
cN
ck

− 1
)
O
(
N

−(1+γ1)
1

)
1 +

(
1− ck

cN

)
O
(
Nc−1

k N
−(1+γ1)
1

) = O(1)

since ( cNck − 1)N
−(1+γ1)
1 = cN−ck

N
N

ckN
1+γ1
1

= o(1).

It remains to verify the condition (c) of Theorem 5, which follows by:

(cN
N

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c

(
∑cN

c=1N
γc
c )

2+δ
2

≤
(
cNN1

N

) 2+δ
2 ckN

(1+γ1)
2+δ
2

1 + (cN − ck)O(1)(
ckN

1+γ1
1 + (cN − ck)O(N1)

) 2+δ
2

=

(
cNN1

N

) 2+δ
2

c
− δ

2
k

1 +
(
cN
ck

− 1
)
O

(
N

−(1+γ1)
2+δ
2

1

)
(
1 +

(
cN
ck

− 1
)
O
(
N−γ1

1

)) 2+δ
2

=
c
2+δ
2

N

c1+δ
k

o(1) = o(1)

where the second equality follows from N ≥ ckN1 and the last one is due to the condition stated in

the Theorem. Note that c
2+δ
2

N /c1+δ
k → 0 is implied by ck/cN → 1.

2) We have:

B2
N

1
cN

∑cN
c=1N

γc
c

≥
cN
N

∑ck
c=1 N

1+γc
c∑ck

c=1 N
γc
c

+ cN
N

cN/ck−1

1/ck
∑ck

c=1 N
γc
c
O(1)

1 + cN/ck−1

1/ck
∑ck

c=1 N
γc
c
O(1)

=

cN
N

∑ck
c=1 N

1+γc
c∑ck

c=1 N
γc
c

+ o(1)

1 + o(1)

since 1/ck
∑ck

c=1N
γc
c > 0. Assumptions (e)(i)-(ii) imply the first component is growing the fastest.

Thus, using cNN1/N ≥ 1:

cN
N

∑ck
c=1N

1+γc
c∑ck

c=1N
γc
c

≥
∑ck

c=1N
1+γc
c∑ck

c=1N1N
γc
c

=

∑ck
c=1

N1+γc
c

N
1+γ1
1∑ck

c=1
Nγc

c

N
γ1
1

≥ O(1)

where the last inequality follows from conditions (e)(ii)-(iii) following the same arguments as in the

proof of part (b).
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Furthermore, we obtain for some ϵ > 0:

(cN
N

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c

(
∑cN

c=1N
γc
c )

2+δ
2

≤
(cN
N

) 2+δ
2
N

2+δ
2

1

ckN
(1+γ1)

2+δ
2

1 + (cN − ck)O(1)

(ckN1N ϵ +N1(cN − ck)O(1))
2+δ
2

=
(cN
N

) 2+δ
2
N

2+δ
2

1 c
− δ

2
k

(
N

γ1
1

Nϵ

) 2+δ
2

+ o(1)

1 + o(1)

which will converge to zero if
(
cN
N

) 2+δ
2 N

2+δ
2

1 c
− δ

2
k

(
N

γ1
1

Nϵ

) 2+δ
2 → 0. But:

(cN
N

) 2+δ
2
N

2+δ
2

1 c
− δ

2
k

(
Nγ1

1

N ϵ

) 2+δ
2

=

(
cN
ck

) δ
2

cN

(
N1+γ1

1

N1+ϵ

) 2+δ
2

≤
(
cN
ck

) δ
2 cN
N

N (1+γ1)
2+δ
δ

1

N

 δ
2

which converges to zero if N (1+γ1)
2+δ
δ

1 /N → 0, which is implied by condition (e)(iv) (recall that

cN/N → 0 and ck/cN → 1).

3) Consider the case ck/cN → 0 now. We have:

B2
N

1
cN

∑cN
c=1N

γc
c

≥ O
(cN
N

) ∑ck
c=1N

1+γc
c + (cN − ck)O(1)∑ck

c=1N
γc
c + (cN − ck)O(1)

(4)

and we can either have the first or the second term in the denominator diverging faster.

Consider first the case when 1/cN
∑ck

c=1N
γc
c ≤ O(1). Now we can rewrite (4) as:

O(1)

∑ck
c=1

N1+γc
c
N +

(
cN
N

) (
1− ck

cN

)
O(1)

1
cN

∑ck
c=1N

γc
c +

(
1− ck

cN

)
O(1)

≥ O(1)

using
∑ck

c=1
N1+γc

c
N ≥

∑ck
c=1

Nc
N → 1, where the last limit follows from cN/N → 0 (note that∑ck

c=1Nc = N − (cN − ck)O(1)). Furthermore, for the case 1/cN
∑ck

c=1N
γc
c → ∞ we write (4)

as:

O(1)

cN
N

∑ck
c=1 N

1+γc
c∑ck

c=1 N
γc
c

+ cN (cN−ck)

N
∑ck

c=1 N
γc
c
O(1)

1 + cN−ck∑ck
c=1 N

γc
c
O(1)

= O(1)

cN
N

∑ck
c=1 N

1+γc
c∑ck

c=1 N
γc
c

+ o(1)

1 + o(1)
≥ O(1)

where the last inequality follows by the same argument as in the proof of part 2) above, with the

help of conditions (e)(ii)-(iii).
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Finally, we can write:

cN
N

∑ck
c=1N

1+γc
c∑ck

c=1N
γk
c

≤
(
cNN1

N

) 2+δ
2

c
− δ

2
N

( ∑ck
c=1 N

1+γc
c

N1
∑ck

c=1 N
γc
c

) 2+δ
2

+ cN−ck
N1

∑ck
c=1 N

γc
c
O(1)(

1 + cN−ck∑ck
c=1 N

γc
c
O(1)

) 2+δ
2

≤ cN
N

N 2+δ
δ

1

N

 δ
2

1 + o(1)(
1 + cN−ck∑ck

c=1 N
γc
c
O(1)

) 2+δ
2

= o(1)

where we have used:

∑ck
c=1N

1+γc
c

N1
∑ck

c=1N
γc
c

≤ 1

1

cN
N1

ck∑
c=1

Nγc
c ≥ 1

cN

ck∑
c=1

N1+γc
c ≥ N

cN

∑ck
c=1Nc

N
→ ∞

and N
2+δ
δ

1 /N → 0 follows from condition (e)(iv). Hence, this part of Theorem 1 follows from

Theorem 5.

D Proof of Theorem 2

We have:

N2V ar(B̂N −BN ) = E

 N∑
i=1

∑
j

(YiYj − E(YiYj))1{l(i, j) <∞}

2

=

N∑
i=1

∑
j

∑
k

∑
l

E[(YiYj − E(YiYj))(YkYl − E(YkYl))]1{l(i, j) <∞}1{l(k, l) <∞}

=

N∑
i=1

∑
j

∑
k

∑
l

Cov(YiYj , YkYl)1{l(i, j) <∞}1{l(k, l) <∞}. (5)

But 1{l(i, j) < ∞}1{l(k, l) < ∞} = 0 unless i and j belong to the same network component and

same happens for k and l. But for such pairs of (i, j) and (k, l) we have Cov(YiYj , YkYl) ̸= 0 only

when (i, j) and (k, l) belong to the same network component (see Assumption 1(c)’). Thus, we can
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rewrite (5) as:

(5) =
cN∑
c=1

∑
i∈Cc

∑
j∈Cc

∑
k∈Cc

∑
l∈Cc

Cov(YiYj , YkYl) ≤M

cN∑
c=1

N4
c

because Cov(YiYj , YkYl) ≤ M for bounded M by the assumption that E |Yi|4 is bounded (in the

statement of the theorem) and Cauchy-Schwartz inequality.

Now consider the three cases in the theorem:

(a)
∑cN

c=1N
4
1 = cNN

4
1 = NN3

1 = o(N2) by the condition logdmax−1 a > 3,

(b)
∑cN

c=1N
4
c ≤ cNN

4
1 = cN

N NN4
1 = o(N2) by cN/N = o(1) and the condition logdmax−1 a > 4,

(c)
∑cN

c=1N
4
c ≤ ckN

4
1 +(cN − ck)O(1) = o(N2) by cN = o(N2) and the condition logdmax−1 a > 2,

(d)
∑cN

c=1N
4
c ≤ ckN

4
1 + o(N2) by the same argument as above. Now, with equal components,

ckN1 = O(N), and logdmax−1 a > 3 implies that the final expression is o(N2). Otherwise,

ckN
4
1 = o(N)N4

1 = o(N2) where the last equality follows from logdmax−1 a > 4.

E Proof of Theorem 3

First note that the statements (i) Nc(N)1+γc

N1(N)1+γ1
→ 0 ⇒ Nc(N)

N1(N) → 0, (ii) Nc(N)γc

N1(N)γ1 is weakly decreasing in

N , (iii) there exists M <∞ such that
Nc

Ñ
(Ñ)

γ
Ñ

NcN
(N)γN <

(
N1(Ñ)
N1(N)

)γ1
for all (N, Ñ) such that cÑ = cN +1

and N > M , are equivalent (respectively) to statements:

(i)’ Nc,f (N)1+γc

N1,f (N)1+γ1
→ 0 ⇒ Nc,f (N)

N1,f (N) → 0,

(ii)’ Nc,f (N)γc

N1,f (N)γ1 is weakly decreasing in N ,

(iii)’ there exists M <∞ such that
Nc

Ñ
,f (Ñ)

γ
Ñ

NcN ,f (N)γN <
(
N1,f (Ñ)
N1,f (N)

)γ1
for all (N, Ñ) such that cÑ = cN +1

and N > M ,

For most parts the proof follows by the same argument as in the proof of Theorem 1 above, with

Nf replacing N , Nc,f replacing Nc and BN,f replacing BN . Thus, we present only arguments that

differ. W.l.o.g. we often write N2
c instead of Nc(Nc − 1) as these are of the same order.

Part (b). Condition (a). of Theorem 5 is satisfied by the same argument as in the proof of

Theorem 1. Note that Nf =
∑cN

c=1Nc(Nc − 1) is minimised subject to
∑cN

c=1Nc = N by setting
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Nc = N/cN , which implies Nf ≥ N(N − 1)/cN . For condition (c), by the same reasoning as above,

we have:

(
cN
Nf

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c,f(∑cN
c=1N

γc
c,f

) 2+δ
2

≤
cNN

(1+γ1)
2+δ
2

1,f

N
2+δ
2

f

and the last expression is bounded by:

c
2+ δ

2
N N

(1+γ1)(2+δ)
1

N2+δ
=
(cN
N

)2+ δ
2

N2(1+γ1)
2+δ
δ

1

N

 δ
2

= o(1)

where the last equality is implied by cN/N → 0 and condition (b) in the statement of the theorem.

Part (c). Here the proof follows the same lines as in Theorem 1 with a difference that now we

require N1+γ1
1,f /N → 0 which is implied by the condition in the statement of the theorem.

Part (d). Consider unequal components case first. Note that we have
∑ck

c=1N
γ1
c,f/Nf ≤∑ck

c=1Nc,f/Nf = O(1) ≤
∑ck

c=1N
1+γ1
c,f /Nf , which implies:

B2
N

1
cN

∑cN
c=1N

γc
c,f

≥ O
(cN
N

) ∑ck
c=1N

1+γc
c,f /Nf + o(1)∑ck

c=1N
γc
c,f/N +O(1)

≥ O(1)∑ck
c=1N

γc
c,f/N +O(1)

so it remains to show that
∑ck

c=1N
γc
c,f/N = O(1). Since:

∑ck
c=1N

γc
c,f

N
=

∑ck
c=1N

γc
c,f

Nγ1
1,f

Nγ1
1,f

N
≤
∑ck

c=1N
γc
c,f

Nγ1
1,f

for N large enough, this follows from assumption (d)(i’) in the theorem, noting that we also have

N2γ1
1 /N → 0. Now to verify condition (c) of Theorem 5, by the same reasoning as in the proof of

Theorem 1 we need
∑ck

c=1

(
N1+γc

c,f /N
) 2+δ

2 → 0. Noting that:

ck∑
c=1

(
N1+γc

c,f

N

) 2+δ
2

≤

(
N1+γ1

1,f

N

) δ
2 ck∑
c=1

N1+γc
c,f

N

condition (d)(i’) implies both that N1+γ1
1,f /N → 0 and

∑ck
c=1N

1+γc
c,f /N converges, which proves the

needed claim.
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Consider now the case where ck components grow at the same rate. Firstly, using cN/Nf ≥

1/N1,f :

B2
N

1
cN

∑cN
c=1N

γc
c,f

≥
ckN

1+γ1
1,f + (cN − ck)O(1)

ckN
1+γ1
1,f + (cN − ck)O(Nf/cN )

=

1 + cN−ck
ckN

1+γ1
1,f

O(1)

1 +
(1−ck/cN )Nf

ckN
1+γ1
1,f

O(1)

and the last expression is bounded away from zero since ckN
1+γ1
1,f /Nf ≥ O(1) (see above) and:

cN − ck

ckN
1+γ1
1,f

=
cN − ck
Nf

Nf

ckN
1+γ1
1,f

= o(1).

Now to verify condition (c) of Theorem 5, just as before we need ck(N
1+γ1
1,f /N)(2+δ)/2 → 0 and

using ck ∼ N/N1 this expression becomes N1+δ+γ1(2+δ)
1 /N δ/2 = (N

2(1+δ)/δ+2γ1(2+δ)/δ
1 /N)δ/2 and

converges to zero by assumption (d)(ii)’ of the theorem.

Part (e). First consider the case with ck components growing at the same rate:

1) Using cN/Nf ≥ 1/N1,f and rearranging we have:

B2
N

1
cN

∑cN
c=1N

γc
c,f

≥ O(1)

1 + cN−ck
ckN

1+γ1
1,f

O(1)

1 +
(
1− ck

cN

)
Nf

ckN
1+γ1
1,f

O(1)

Now Nf = ckN1,f + (cN − ck)O(1) and (cN − ck)/Nf → 0 imply ckN1,f/Nf → 1, which gives

ckN
1+γ1
1,f /Nf ≥ O(1) and cN−ck

ckN
1+γ1
1,f

= cN−ck
Nf

Nf

ckN
1+γ1
1,f

= o(1) . This verifies condition (a) of Theorem

5.

Now proceeding as in the proof of Theorem 1 we get:

(
cN
Nf

) 2+δ
2
∑cN

c=1N
(1+γc)

2+δ
2

c,f(∑cN
c=1N

γc

c,f

) 2+δ
2

≤
(
cNN1,f

Nf

) 2+δ
2

c
− δ

2

k

1 +O(1)(cN − ck)/(ckN
(1+γ1)

2+δ
2

1,f )(
1 +O(1)(cN − ck)/(ckN

γ1

1,f )
) 2+δ

2

=
c

2+δ
2

N

c1+δ
k

o(1) = o(1)

where the first equality follows from cN−ck
Nf

Nf

ckN
1+γ1
1,f

= o(1) in the previous paragraph and Nf ≥

ckN1,f (which implies N1,f/Nf ≤ 1/ck). The final equality follows from condition (e) of the theorem.

2) Now consider the case ck/cN → 1. First part of the proof follows by the same reasoning as
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in Theorem 1 using assumptions (e)(ii)-(iii). Also, by similar reasoning as the one there:

(
cN
Nf

) 2+δ
2

∑cN
c=1N

(1+γc)
2+δ
2

c,f(∑cN
c=1N

γc
c,f

) 2+δ
2

≤
(
cN
Nf

) 2+δ
2

N
2+δ
2

1,f c
− δ

2
k

(
N

γ1
1,f

Nϵ

) 2+δ
2

+ o(1)

(1 + o(1))
2+δ
2

Since:

(
cN
Nf

) 2+δ
2

N
2+δ
2

1,f c
− δ

2
k

(
Nγ1

1,f

N ϵ

) 2+δ
2

≤
(
cN
ck

) δ
2 cN
N

N1+γ1
1,f N

2
2+δ

Nf

 2+δ
2

A sufficient condition for the last expression to converge to zero is N1+γ1
1,f N

2
2+δ /Nf → 0. As in the

proof of part (b), we have Nf ≥ N(N − 1)/cN , which gives:

N1+γ1
1,f N

2
2+δ

Nf
≤ cN
N

N2(1+γ1)
2+δ
δ

1

N

 δ
2+δ

and the latter converges to zero by condition logdmax−1 a > 2(1 + γc)
2+δ
δ .

3) Here ck/cN → 0. Condition (a) of Theorem 5 follows by an argument mirroring the one in

the proof of Theorem 1. To verify condition (c) note that:

cN
Nf

∑ck
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1+γc
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γk
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γc
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+ cN−ck
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O(1)(
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(
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c
− δ

2
N ≤ O(1)
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N

2+ δ
2

N 2(2+δ)
δ

1

N


δ
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= o(1)

where we have used:

∑ck
c=1N

1+γc
c,f

N1,f
∑ck

c=1N
γc
c,f

≤ 1,
1

cN
N1,f

ck∑
c=1

Nγc
c,f → ∞, Nf ≥ N(N − 1)/cN

and the last equality follows from logdmax−1 a >
2(2+δ)

δ . The result now follows by Theorem 5.
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F Proof of Theorem 4

For a sequence of random variables {W1, . . . ,WN} define the UN operator as:

UNh =
1

N(N − 1)

∑
i ̸=j

h(Wi,Wj)1{l(i, j) <∞}.

where h is a symmetric kernel. By Hoeffding decomposition:

√
NY c

BN,c
= B−1

N,c

1√
N

N∑
i=1

h1(Yi)
Nc(i)− 1

N − 1
+

1

2
B−1

N,c

√
NUNh2 (6)

where h2(y1, y2) = h(y1, y2)− h1(y1)− h1(y2). Let us first show that B−1
N,c

√
NUNh2 = op(1).

We have:

V ar(
√
NUNh2) =

1

N(N − 1)2

N∑
i=1

∑
j ̸=i

N∑
k=1

∑
l ̸=k

E[h2(Yi, Yj)h2(Yk, Yl)]1{l(i, j) <∞}1{l(k, l) <∞}

=
1

N(N − 1)2

cN∑
c=1

∑
i∈Cc

∑
j∈Cc,j ̸=i

∑
k∈Cc

∑
l∈Cc,l ̸=k

E[h2(Yi, Yj)h2(Yk, Yl)]

since the term under the sum is only nonzero if (i, j, k, l) belong to the same component (note that

Eh2(Yi, Yj) = 0).

As in the proof of Theorem 3.1 in Kojevnikov et al. (2021), let HNc(s,m) be defined as the sets

of nodes {i, j, k, l} where {i, j} and {k, l} are both in the m-neighbourhood from each other and the

network distance between {i, j} and {k, l} is at least s, formally: HNc(s,m) = {(i, j, k, l) : l(i, j) ≤

m, l(k, l) ≤ m, l({i, j}, {k, l}) ≥ s}. We have HNc(s,m) ≤ 4NccNc(s,m; 2) (ibid.). Now by Lemma

2 we can bound:

N3V ar(
√
NUNh2) =

cN∑
c=1

∑
s≥0

∑
{i,j,k,l}∈HNc (s,Nc)

j ̸=i,l ̸=k

E[h2(Yi, Yj)h2(Yk, Yl)] ≤
cN∑
c=1

∑
s≥0

|HNc(s,Nc)|αc(s)

≤ 4

cN∑
c=1

Nc

∑
s≥0

cNc(s,Nc; 2)αc(s).

Now Assumption 2(b) implies that V ar(B−1
N,c

√
NUNh2) = o(1).

Finally, the asymptotic normality of the first element in (6) follows from Theorem 3.2 in Ko-
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jevnikov et al. (2021). To see that define Xi,N = h1(Yi)
Nc(i)−1
N−1 note that the triangular array

{Xi,N}∞i=1 is strong mixing with coefficients αN (·) and the conditions of their theorem are implied

by Assumptions 2(a), (c) (note that Nc/N ≤ 1).

37



G Additional MC simulations

Table 3: Simulated coverage, edge-specific means (contrasts), normal errors, 95% level

BA model SW model
Coverage Coverage

N m za dmax ∆N oracle p k dmax ∆N oracle

Equal Components

500 1 0 10 10 0.944 0.05 2 6 12 0.957
1000 1 0 10 11 0.953 0.05 2 6 15 0.951
5000 1 0 10 13 0.953 0.05 2 7 20 0.946

10000 1 0 10 14 0.942 0.05 2 7 20 0.948

500 1 1 10 16 0.946 0.05 5 13 5 0.931
1000 1 1 10 16 0.941 0.05 5 13 6 0.940
5000 1 1 10 23 0.950 0.05 5 14 7 0.945

10000 1 1 10 19 0.963 0.05 5 15 8 0.939

500 1 2 10 14 0.953 0.05 10 24 3 0.946
1000 1 2 10 15 0.941 0.05 10 24 4 0.935
5000 1 2 10 18 0.947 0.05 10 26 5 0.948

10000 1 2 10 21 0.955 0.05 10 26 5 0.949

500 2 0 20 7 0.959 0.1 2 8 9 0.956
1000 2 0 20 8 0.958 0.1 2 7 10 0.946
5000 2 0 20 11 0.943 0.1 2 8 14 0.942

10000 2 0 20 11 0.951 0.1 2 9 15 0.956

500 2 1 20 7 0.953 0.1 5 14 4 0.953
1000 2 1 20 7 0.933 0.1 5 14 5 0.952
5000 2 1 20 9 0.941 0.1 5 16 6 0.955

10000 2 1 20 11 0.945 0.1 5 16 7 0.935

500 2 2 20 6 0.948 0.1 10 25 3 0.932
1000 2 2 20 7 0.955 0.1 10 25 4 0.949
5000 2 2 20 9 0.940 0.1 10 28 4 0.948

10000 2 2 20 9 0.936 0.1 10 30 5 0.933

Growing + Fixed

500 1 0 10 10 0.956 0.05 2 6 12 0.949
1000 1 0 10 13 0.952 0.05 2 6 15 0.952
5000 1 0 10 12 0.953 0.05 2 7 20 0.947

10000 1 0 10 13 0.941 0.05 2 7 20 0.962

500 1 1 10 11 0.958 0.05 5 13 5 0.944
1000 1 1 10 14 0.960 0.05 5 13 6 0.941
5000 1 1 10 16 0.961 0.05 5 14 7 0.939

10000 1 1 10 17 0.955 0.05 5 15 8 0.946

500 1 2 10 16 0.962 0.05 10 24 3 0.948
1000 1 2 10 17 0.961 0.05 10 24 4 0.959
5000 1 2 10 23 0.954 0.05 10 26 5 0.959

10000 1 2 10 22 0.950 0.05 10 26 5 0.947

500 2 0 20 7 0.928 0.1 2 8 9 0.943
1000 2 0 20 8 0.949 0.1 2 7 10 0.940
5000 2 0 20 9 0.948 0.1 2 8 14 0.947

10000 2 0 20 10 0.933 0.1 2 9 15 0.944

500 2 1 20 7 0.952 0.1 5 14 4 0.958
1000 2 1 20 7 0.953 0.1 5 14 5 0.953
5000 2 1 20 10 0.955 0.1 5 16 6 0.951

10000 2 1 20 10 0.948 0.1 5 16 7 0.959

500 2 2 20 6 0.943 0.1 10 25 3 0.952
1000 2 2 20 7 0.945 0.1 10 25 4 0.944
5000 2 2 20 9 0.949 0.1 10 28 4 0.944

10000 2 2 20 9 0.953 0.1 10 30 5 0.947

Note: 1000 Monte Carlo simulations, 1000 bootstrap replications. “Oracle” – known variance.
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