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Abstract

In this note I show that the
√
N convergence to the normal distribution holds for the density

of outcomes generated from a dyadic network using the seminal result in the U-statistic literature

obtained by Frees (1994). In particular, our derivations imply that the results in Graham et al.

(2024) follow from arguments in Frees (1994).

1 Introduction

Graham et al. (2024) (henceforth, GNP) analyse nonparametric estimation of the marginal density

of:

Wij = W (Ai, Aj , Vij)

where {Ai}Ni=1 and {Vij}Ni,j=1 are i.i.d. and mutually independent and the function W is symmetric

in the first two arguments. Note that this implies that Wij ⊥ Wkl unless at least one of the indices

in (i, j) and (k, l) coincide. They show that the kernel density estimator:

f̂W (t) =
2

N(N − 1)

∑
i<j

1

hN
K

(
t−Wij

hN

)

converges to the normal distribution at the parametric rate
√
N .

Frees (1994) (henceforth, FR) analyses nonparametric estimation of the marginal density of
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g(A1, A2, . . . , Am), where {Ai}Ni=1 is an i.i.d. sequence and g is symmetric in all arguments,1 and

shows that the kernel density estimator:

f̂g(t) =

(
N

m

)−1 ∑
1≤i1<i2<...<im≤N

1

hN
K

(
t− g(Ai1 , Ai2 , . . . , Aim)

hN

)

converges to the normal distribution at the parametric rate
√
N .

Intuitively, to see the relationship between the two results, first assume that Vij is drawn from

the same distribution as Ai’s. As Vij ’s are independent of Ai’s, without loss of generality we can

write Wij ≡ Wijk = W (Ai, Aj , Ak). Define the symetrised version of Wijk as:

g(Ai, Aj , Ak) = W (Ai, Aj , Ak) +W (Ak, Ai, Aj) +W (Ai, Ak, Aj)

(note that W is symmetric in the first two arguments). Now asymptotic
√
N normality of the

kernel density estimate of the density of g follows from the main theorem in FR. Note that, beyond

standard conditions on the kernel function, FR requires the density of g(a,Aj , Ak), w1(t; a), to exist

and satisfy suptEA|w1(t;A)|2+δ < ∞, which is implied by the smoothness conditions for W and

the density of Vij imposed by GNP.

2 Main result

The previous discussion imposed some additional assumptions on the model in GNP. Here I show

that even without restricting the distribution of Vij (beyond assumptions in GNP) and without

symmetrising the function W in the third argument, the asymptotic
√
N normality of the kernel

density estimator follows from arguments in FR as the shock V gets integrated out in this argument

anyway.

Define fW |AA as the marginal distribution of Wij given (Ai, Aj). We make the same assumptions

as the ones used in GNP (pp. 3,5):

Assumption M. (a) fW |AA(w|a1, a2) is bounded and twice continuously differentiable for all w,

a1 and a2.
1Giné & Mason (2007) extend his results to a uniform-in-bandwidth result.
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(b) K is bounded, symmetric; K(u) = 0 if |u| > ũ for some finite ũ;
∫
K(u)du = 1.

(c) hN → 0, NhN → ∞, Nh4N → 0.

Note that condition (a) implies that suptE|w1(t;A1)|2+δ < ∞, where w1(t; a) is the marginal

density of Wij given Ai = a. Part (c) assumes undersmoothing and, thus, means that the bias of

the kernel estimator goes to zero. Overall, Assumption M implies that the conditions of the main

theorem in FR are satisfied with the asymptotic bias B = 0.

The following proposition shows that the main result in GNP follows from FR. As in FR one

can prove a slightly more general version of this theorem with the asymptotic bias B ̸= 0 using the

same techniques, however, for simplicity, we concentrate on the case of undersmoothing as this is

the main case in the discussion of GNP. Additionally, for the sake of exposition (as in GNP) we give

the result for the second-order U statistic but the same proof would apply to higher order U’s (as

in FR).

Proposition 1. Under Assumption M we have:

√
N(f̂W (t)− fW (t)) → N(0, 4V ar(w1(t;A1))).

Proof. As in FR we will start with showing that the residual term in the Hoeffding decomposition

converges to zero in probability.

Define

W1N (a, t) = h−1
N E

[
K

(
t−W (a,A2, V12)

hn

)]
− h−1

N E

[
K

(
t−W (A1, A2, V12)

hN

)]
,

and RN (t) = 2
N(N−1)

∑
1≤i1<i2≤N g̃(Ai1 , Ai2 , Vi1i2 ; t) where:

g̃(a1, a2, v12; t) =
1

hN
K

(
t−W (a1, a2, v12)

hN

)
− 1

hN
E

[
K

(
t−W (A1, A2, V12)

hN

)]
−W1N (a1, t)−W1N (a2, t)

Lemma A. Let Assumption M hold. Then:

RN (t) = Op(h
−1/2
N N−1).
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Proof. Note that E[g̃(Ai1 , Ai2 , Vi1i2 ; t)|Ai1 ] = 0. We have:

V ar(RN (t)) =
4

N2(N − 1)2

∑
1≤i1<i2≤N

∑
1≤j1<j2≤N

E[g̃(Ai1 , Ai2 , Vi1i2 ; t)g̃(Aj1 , Aj2 , Vj1j2 ; t)]. (1)

When {i1, i2} and {j1, j2} have 0 or 1 element in common the expectation under the sum is zero.

Otherwise, the cross-product is bounded by:

E[g̃2(Ai1 , Ai2 , Vi1i2 ; t)] ≤ h−1
N E

[
K

(
t−W (Ai1 , Ai2 , Vi1i2)

hN

)2
]
+ h−1

N E[W1N (Ai1 , t)]
2 = O(h−1

N )

where the first term after the inequality is O(h−1
N ) by a standard argument, using smoothness of

the distribution fW , and the second term is O(1) by the derivation below. Finally, by the same

combinatorial argument as in FR the number of non-zero elements in the sum in (1) is of order

O(N2) and we have:

V ar(RN (t)) = Op(h
−1
N N−2)

which is sufficient for the result.

Now using the Hoeffding decomposition and Lemma A we have:

√
N(f̂W (t)− E[f̂W (t)]) =

2√
N

N∑
i=1

W1N (Ai, t) + op(1).

First note that due to Nh4N → 0 we have E[f̂W (t)] = fW (t) + o(N−1/2). Next, recalling that

w1(t;A) ≡ fW |A(t|A), and that, by the change of variables, we have:

h−1
N E

[
K

(
t−W (a,A2, V12)

hn

)]
=

∫
K(s)w1(t− shN ; a)ds,

we can write:

E[W 2
1N (Ai, t)] = V ar

(∫
K(s)w1(t− shN ;Ai)ds

)
≤

∫
K2(s)E[w2

1(t− shN ;Ai)]ds < ∞

where we have used E[X2] ≥ (E[X])2, and the final inequality follows from Assumption M which
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implies boundedness of fW |A and K. Finally, using this and a triangular array central limit theorem

we can show that:

2√
N

N∑
i=1

W1N (Ai, t) →d N(0, 4V ar(w1(t;A)))

3 Conclusion

In section "Extensions" Graham et al. (2024) conjecture that their derivation of the asymptotic

distribution should also apply to an outcome defined as Wij = W (Ai, Aj). Actually, this directly

follows from the result in Frees (1994), which shows again the generality and usefulness of his

approach. In principle, one can apply the result in FR to any known function of the characteristics

of two nodes i and j, for example g(Ai, Aj) = |Ai − Aj |, as long as the outcomes {Ai}Ni=1 are i.i.d.

(e.g. due to random assignment).
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