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Abstract

We provide methods for the empirical analysis of a class of two-player repeated games with

i.i.d. shocks, allowing for non-Markovian strategies. The number of possible equilibria in these

games is large and, usually, theory is silent about which equilibrium will be chosen in practice.

Thus, our method remains agnostic about selection among these multiple equilibria, which leads

to partial identification of the parameters of the game. We propose a profiled likelihood criterion

for building confidence sets for the structural parameters of the game and derive an easily com-

putable upper bound on the critical value. We demonstrate good finite-sample performance of

our procedure using a simulation study. We illustrate the usefulness of our method by studying

the effect of repealing the Wright Amendment on entry and exit into Dallas airline markets and

find that the static game approach overestimates the negative effect of the law on entry into

these markets.
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1 Introduction

The theory of repeated strategic interactions has been thoroughly studied by economists. However,

the empirical analysis of repeated games is scarce. Repeated games usually feature many equilibria

making their analysis difficult. In this paper we endeavour to provide an empirical framework

for a two-player binary repeated game with i.i.d. shocks to payoffs. We leverage the theoretical

result that, conditional on the continuation payoff, a repeated game reduces to a form of a static

game for identification, develop a convenient maximum likelihood characterization of the identified

set and use it to develop a profiled likelihood ratio test for estimating confidence sets for the

structural parameters. We derive the asymptotic distribution of the test statistic and provide an

upper bound on the critical value. Monte Carlo simulations suggest that this bound leads to only

moderately conservative inference. However, this critical value requires a preliminary estimator of

the identified set which makes it computationally intensive. Thus, we also suggest an alternative

easily computable, but more conservative, upper bound on the critical value.

As a static game Nash equilibrium repeated over time constitutes an equilibrium in the repeated

version of such game, allowing repeated interactions between agents enlarges the set of possible

equilibria and allows the model to justify wider range of behaviours. Since repeated games are

notoriously perceived as providing very non-sharp theoretical predictions, one may think that in

fact we may be able able to justify any behaviour with such model. However, play observed in the

data may exclude some equilibria. Take as an example a classic repeated prisoners dilemma with

no stochastic shocks (or very small shocks). If we observe in the data that players cooperate in this

game, this rules out a unique static equilibrium in this game, namely playing defect-defect. Thus,

combining theory and data may still lead to useful predictions. This example also illustrates that

predictions from a static and repeated version of a game can substantially differ. In fact, in Section

8 we re-investigate the policy analysis in Ciliberto & Tamer (2009) of the effect of repealing the

Wright Amendment on entry and exit into Dallas airline markets by Southwest and American using

our empirical repeated game and find that the static game approach overestimates the negative

effect of the law on entry into these markets.1

Our article is related to the literature on estimation of dynamic games with incomplete informa-

1Recent papers analysing the US airline market include Goolsbee & Syverson (2008), Gerardi & Shapiro (2009),
Berry & Jia (2010) and Ciliberto et al. (2021).
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tion. However, it differs from the approach in Bajari et al. (2007) in important aspects. We focus

on a simple form of a dynamic game without state dependence and with complete information.2

In this subset of dynamic games we do not have to restrict ourselves to Markov perfect equilibria,

allowing for a rich set of equilibrium strategies potentially dependent on the whole history of play.

In fact, Markov perfect equilibria in this game correspond to stage game equilibria, thus Markov

restriction makes the dynamic dimension irrelevant.

Using experimental setup and an estimated structural model Salz & Vespa (2020) show that the

Markovian assumption is often not satisfied and may lead to erroneous estimates and predictions,

which motivates considering models without this assumption. Our model delivers a framework

allowing non-Markov play, which, for example, facilitates justification of collusive behavior. We

stress however that we restrict ourselves to stationary-outcome equilibria. Thus, our approach can

be seen as an alternative to the established dynamic games approach in settings where agents face

a long-term strategic interaction in a stable environment with well known structure of the payoffs.

Our inference approach is similar to Kline & Tamer (2016) and Chen et al. (2018) in that we

assume that the (population) likelihood identifies the choice probabilities but not the parameters

(see also Giacomini & Kitagawa (2021)). We apply the same profiled likelihood ratio criterion as in

Chen et al. (2018) but analyse it differently with a view of obtaining a practical inference method

tailored to our repeated game model, as the general procedure in the latter paper is computationally

difficult in our setup. The computational advantage of our method comes at the cost of conservative

inference, though. This is a trade-off frequently encountered in applications of partially identified

models.

Since we focus on providing marginal confidence intervals for the identified structural parame-

ters, our article is related to the literature on marginal inference in partially identified models – see

e.g. Bugni et al. (2017) and references therein. Our problem features also likelihood ratio statistic

with a parameter on the boundary of the parameter space as in e.g. Shapiro (1985), Andrews

(2001) (in point identified model) and in e.g. Chernozhukov et al. (2007) (in partially identified

model). Recent contribution to this literature involves e.g. Al Mohamad et al. (2020). The tech-

nique in the latter paper could, in principle, be used to bound the critical value for our problem

2In principle, our method can be extended to more general dynamic games with non-trivial state dependence,
however implementing such an extension poses a difficult computational challenge so we leave it for further research.
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as well. However, their method would work well in settings when only a few boundary constraints

are binding, which makes it unattractive in our setup.

An alternative approach to inference in our model would characterize the identified set using

moment inequalities like in Beresteanu et al. (2011) or Galichon & Henry (2011) and then employ

profiled inference methods (Romano & Shaikh (2008), Bugni et al. (2017) or Kaido et al. (2019)).

Other articles addressing identification in repeated games include Abito & Chen (2021) and

Lee & Stewart (2016). The former work effectively analyses a non-stochastic repeated game and

provides worst-case bounds for probabilities of play across heterogenous repeated games. We allow

payoffs to be stochastic, even if with limited dependence, as the assumption of time-invariant,

deterministic payoffs seems too strong for applications. We also provide a sharp characterization

of the identified set, rather than worst-case bounds. Lee & Stewart (2016), again, consider a non-

stochastic repeated game and, additionally, assume that players’ best response correspondences are

fully observed, which is rarely the case in empirical applications.

2 Repeated Game with Random States

A defining feature of our model is that agents, unlike in a standard repeated game, play a different

game every period. The payoffs in the stage game are stochastic and distributed i.i.d. over time

(conditional on observables). Payoffs are fully observed by the players but the econometrician

observes only the history of play and has only limited information about the non-stochastic part of

the payoff. In particular, she does not observe the realization of the i.i.d. shocks.3

We focus on binary games. Let A = {0, 1}2 denote the set of actions with a typical element a.

There are two players identified by i = 1, 2 playing an infinitely repeated game, t = 0, 1, 2 . . . ,∞.

Every period a random payoff relevant vector εt = {(ε1t,a, ε2t,a)}a∈A is drawn from the distribution

Fε : E → [0, 1] with the following properties:

Assumption ID1. εt are i.i.d. across time and E(εt,a) = 0 for all a and εt,0 = 0 (normalization).

Denote player i’s payoff in period t by ũi(at, εit,at ;αi) = ui(at;αi) − εit,at , where αi is a finite

dimensional parameter. Define α = (α1, α2) . In practice some observed characteristics X ∈ X ⊂

RK will usually enter the payoff function. For now we suppress them from notation for the ease

3For the rest of the paper we will simply refer to our repeated game with random states as a “repeated game”.
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of exposition. We discuss the additional issues related to the presence of covariates in Section 6.

Payoffs in future periods are discounted by a common discount factor δ ∈ (0, 1).

Let Ht = (E × A)t denote the set of period t ex ante histories with a typical element ht =

{εs,as , as}t−1
s=0. Let H̃t = (E × A)t × E denote the set of period t ex post histories with a typical

element h̃t = (ht, εt). A pure strategy profile, σ, is a pair of mappings from H̃t to A. Player i’s

expected lifetime payoff from playing the game is:

Ui(σ;αi) = Eσ

[ ∞∑
t=0

δtũi(at, εit,at ;αi)

]

where the expectation is taken over the histories induced by σ.

A normalized continuation payoff of player i after a history h̃t is given by:

V σ
i (h̃t;αi) = (1− δ)ui(σ(h̃t);αi)− (1− δ)εit,σ(h̃t) + δ

∫
V σ
i (h̃t+1;αi)dFε

In our game with i.i.d. shocks the expected continuation payoff of player i, namely
∫
V σ
i (h̃t+1;αi)dFε

in the above expression, depends only on a current action a = σ(h̃t) so we can denote it by vi(a)

(see Remark 5.7.1 in Mailath & Samuelson (2006)).

3 Identification

We start with an example to discuss the main ideas behind identification and formalize it later.

3.1 Illustrative example

Consider a simple game with the following stage game payoffs (for further reference, we will call

this game ΣS):

P 1

P 2

1 0

1 α1 − ε1, α2 − ε2 −ε1, 0

0 0,−ε2 0, 0

where ε1 and ε2 are identically and independently distributed (with some abuse of notation, let Fε

denote their distribution). The corresponding normal form of the repeated game is given by:
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P 1

P 2

1 0

1
(1− δ)(α1 − ε1) + δv1(1, 1),

(1− δ)(α2 − ε2) + δv2(1, 1)
−(1− δ)ε1 + δv1(1, 0),

δv2(1, 0)

0
δv1(0, 1),

−(1− δ)ε2 + δv2(0, 1)
δv1(0, 0), δv2(0, 0)

Let α1 = α2 = α > 0. By analogy to static binary games (see Tamer (2003)), we may have

multiple Nash equilibria in this normal form. For example, assuming that players play a static

Nash equilibrium in every period, i.e. vi(a) = 0 for all i and a, both (1,1) and (0,0) can arise in

equilibrium when ε1 and ε2 are between 0 and α.

Figure 1: Multiple equilibria in the normal form

(0, 0)

(1, 1)

(0, 0) or (1, 1)

(0, 1)

(1, 0)

δ/(1− δ)D01

δ/(1− δ)D10

α+ δ/(1− δ)D2
11

α+ δ/(1− δ)D1
11

ε1

ε2

Case 1

(0, 0)

(1, 1)
(0, 1)

(1, 0)

(0, 1) or (1, 0)

δ/(1− δ)D01

δ/(1− δ)D10

α+ δ/(1− δ)D2
11

α+ δ/(1− δ)D1
11

ε1

ε2

Case 2

(0, 0)

(1, 1)
(0, 1)

(1, 0)

no equil.

δ/(1− δ)D01

δ/(1− δ)D10

α+ δ/(1− δ)D2
11

α+ δ/(1− δ)D1
11

ε1

ε2

Case 3

In general, the region of ε for which we will have multiple equilibria depends on V , or more
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specifically – on the value contrasts Di
a:

D10 = v1(1, 0)− v1(0, 0), D01 = v2(0, 1)− v2(0, 0)

D1
11 = v1(1, 1)− v1(0, 1), D2

11 = v2(1, 1)− v2(1, 0)

Figure 1 shows regions of values of (ε1, ε2) for which different equilibria occur for different values

of Di
a’s. There are several regions where the game has two equilibria. Let us focus on Case 1 and

the probability that (1,1) is played in a subgame-perfect equilibrium. For simplicity assume that

only symmetric equilibria are played in this game so D1
11 = D2

11 = D11, D10 = D01. Let π denote

the probability that (0,0) is played in equilibrium in the region where both (0,0) and (1,1) can be

played. Then, we can write the probability of (1,1) being played in this repeated game, conditional

on the continuation values V as:

p(1, 1|V ) =

[
Fε

(
α+

δ

1− δ
D11

)]2

− π
[
Fε

(
α+

δ

1− δ
D11

)
− Fε

(
δ

1− δ
D01

)]2

Thus, conditional on V the problem boils down to a standard identification problem in static games,

where we may have multiple equilibria and we do not observe the equilibrium selection probability

π. However, in our repeated game lack of identification is magnified by the fact that we observe

neither π nor V . Nevertheless, our application shows that this does not preclude us from obtaining

meaningful bounds on the model parameters.

3.2 General case

Let us now formalize the identification argument. Throughout our analysis we will assume that

Assumption ID2. (a) δ and Fε are known, (b) u(ai, a−i;α) = 0 for some ai ∈ A and all a−i ∈ A

This assumption is frequently made in dynamic discrete choice and dynamic games literature.

In the case of dynamic discrete choice models, Magnac & Thesmar (2002) showed that the payoff

functions are not identified without knowledge of the discount factor and distribution of shocks

or without normalizing the payoffs for one of the alternatives. In practice one can conduct the

analysis for different values of δ and different distributions Fε in order to investigate the sensitivity

of results to this assumption.
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We assume that we observe a finite history of play, {as}t−1
s=0, in at least one game (market) and

the observed play is generated by some subgame-perfect Nash equilibrium. In principle, charac-

terizing the set of equilibria in our game is complicated since there are numerous strategies that

can generate a given equilibrium outcome. Fortunately, we do not have to work with strategies

directly but rather characterize sufficient and necessary condition(s) for observed choices to be

made in equilibrium. Let pt(a) denote the probability of a being played in equilibrium at some

t. We will restrict this probability to be stationary. Note that this does not necessarily restrict

strategies to be stationary and allows, for example, grim-trigger strategies (see e.g. Example 2.4.1

in Mailath & Samuelson (2006)), as long as they lead to a stationary outcome on the equilibrium

path.

Assumption ID3. Players play a stationary-outcome subgame-perfect Nash equilibrium, i.e. pt(a) =

p(a) for all t.

In principle, we could work with non-stationary outcome equilibria. However, this would require

that we observe the same game being played in many different markets such that we can calculate

pt(a) for every t by looking at probability of a being played across markets. Such data is hard to

come by since payoffs usually differ between markets due to different market characteristics. In

some games Assumption ID3 rules out some important equilibria, e.g. some efficient symmetric

equilibria (see Section 6.3 in Mailath & Samuelson (2006)), thus one needs to be careful if it is

not too strong in a particular game of interest. Generally, it is difficult to characterize strategies

excluded by this assumption.

Before we characterize the empirical content of our model, note that, since the researcher

observes neither present nor historical ε’s, it is not possible to restrict the set of potential equilibria

based on the observed history of play, i.e. based on observing history of actions only. In other

words, a given observed history of actions {as}ts=1 can be reconciled with any V ∈ V by choosing

the history of ε’s appropriately (e.g. driving some close to ±∞). Thus, all the potential equilibrium

continuation payoffs have to be considered at each time period and history.

Lemma 1. Let VS(α) denote the set of pairs of expected lifetime payoffs that can be reached in a

stationary-outcome equilibrium, i.e. for any subgame-perfect Nash equilibrium strategy σ we have

(U1(σ;α1), U2(σ;α2)) ∈ VS(α), and v(a) = (v1(a), v2(a)) ∈ VS(α) denote expected continuation pay-
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offs associated with playing a in the current period. Define V = (v(a), v(a′1, a2), v(a1, a
′
2), v(a′1, a

′
2))

with a1 6= a′1, a2 6= a′2. Then, for some distribution FV : VS(α)4 → [0, 1]:

p(a) =

∫
VS(α)4

P (a is a Nash equilibrium in the normal form game with payoffs gi(a)|V = v)dFV (v)

(1)

where:

gi(a) = (1− δ)(ui(a;αi)− εi,a) + δvi(a),

and {(ε1,a, ε2,a)}a∈A are drawn from Fε.

Lemma 1 follows from Proposition 5.7.3 in Mailath & Samuelson (2006). The distribution

FV can be interpreted as an equilibrium selection function since every v ∈ VS(α) corresponds to a

different subgame-perfect equilibrium in our stochastic game. If data comes only from a single game

and mixing between different equilibria is not allowed, then FV is degenerate on some particular V .

However, if we allow mixing between equilibria data (for example, across different markets), then

FV may put non-trivial mass on several V ’s corresponding to different markets.

Lemma 1 is useful for two reasons. First, it allows us to describe the identified set in the model

without dealing with strategy functions, which belong to a complicated functional space. Instead,

in order to verify if a given parameter value α can be reconciled with observed probabilities, it is

enough to check if these probabilities can be generated in equilibrium by some (combination of)

continuation payoffs in VS(α)4. Second, calculating the sets VS(α) is relatively easy for a game

with discretely supported independent shocks and we can approximate these sets for a game with

continuous Fε by increasing the number of support points of ε. We discuss methods for obtaining

these sets in the next section.

Thinking of the relationship between V in our model and an equilibrium selection probability

in a classic static game model, the main difference seems to be that the domain of V depends on

the parameters of the game α, whereas in the static model the domain of the selection probability

is always [0, 1]. This complicates inference as the set V has to be re-calculated (or approximated)

for each candidate value of α.
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Note that the normal form game may have multiple equilibria itself and denote by π the equi-

librium selection probability in the ambiguous region. Let us now make explicit the dependence of

the choice probabilities on the parameter α and the equilibrium selection probabilities π and FV

by writing p(a;α, π, FV ). F(α) denotes the set of all cumulative distribution functions supported

on VS(α)4. As a result of Proposition 1 and the standard argument for identification of maximum

likelihood (see e.g. Amemiya (1986)), we have the following corollary:

Corollary 1. Define the identified set ΘS
01 as the set of α’s for which observed probabilities are

consistent with some stationary-outcome Nash subgame-perfect equilibrium. Assume that:

sup
π∈[0,1],FV ∈F(α)

E0| log p(a;α, π, FV )| <∞

for all α ∈ ΘS
01 and that the selection probability π does not depend on ε or V . Then:

ΘS
01 = arg sup

α
sup

π∈[0,1],FV ∈F(α)
E0 log p(a;α, π, FV ) (2)

where the expectation is taken with respect to the true distribution of a. This set is sharp.

It is worth mentioning that a sharp characterisation of the identified set can also be obtained

through moment inequalities using the random set approach of Beresteanu et al. (2011), which does

not require putting, arguably, strong restrictions on the dependence between π and (ε, V ) present in

Corollary 1.4 However, with that approach it is less clear how to obtain easily computable critical

values or moderately conservative approximations to these critical values as in Section 5.1. We

compare our approach to the moment inequality approach in Appendix C.

4 Equilibrium continuation payoff sets

In this section we illustrate how one can obtain the sets VS(α). In fact, we will show how to obtain

an outer approximation to this set, V(α), since we will allow V(α) to contain continuation payoffs

both from stationary- and non-stationary-outcome equilibria. Having calculated V(α), we can

characterize an outer set of the identified set, Θ01, by replacing VS(α) with V(α) in characterisation

4One could relax this assumption and allow π to be a parametric function of V and still keep inference based on
Corollary 1 computationally appealing. Allowing π to vary with ε seems more difficult.
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(2). Even though ΘS
01 ⊂ Θ01 the outer set obtained in this way is still quite narrow in our application

(and Monte Carlo simulations).

With finite discrete support of shocks we can view games with different draws of ε as separate

non-stochastic repeated games and use the algorithms introduced in Abreu et al. (1990) and Abreu

& Sannikov (2014) to find the sets of equilibrium payoffs in these games. Let Vεm(α),m = 1, . . . ,M

denote the collection of equilibrium payoff sets for different values of shocks εm ∈ E . Then, the set

of equilibrium payoffs in the full game can be calculated as a Minkowski sum:

V(α) = {V : V = V1 · P (ε = ε1) + . . .+ VM · P (ε = εM ), V1 ∈ Vε1(α), . . . , VM ∈ VεM (α)}

(see Remark 5.7.1 in Mailath & Samuelson (2006)).5 We will sometimes refer to this set of equilib-

rium payoffs as the ‘V set’.

Figure 2: Set of equilibrium payoffs, V

Game ΣS Cournot entry game

Note: α = 1, δ = 0.75. Blue line demarcates the set of payoffs in the non-stochastic version of the game with
ε1 = ε2 = 0. Red line delineates the set in the stochastic game.

We will illustrate the construction of this set using the game ΣS and a simplified version of

an entry game in which entrants engage in Cournot competition (see Tamer (2003), henceforth,

referred to as ”Cournot entry game”), both with discrete support of shocks over E = {−2, 0, 2}2.

5According to Mailath & Samuelson (2006) the above equality holds for a fixed M . Showing that it also holds as
M →∞ or providing a bound on the finite approximation is an exercise in the theory of repeated games, as this would
involve showing that the limit of the approximation is an equilibrium continuation set in a game with continuously
distributed ε, a task we leave for further research. One can always see our model as a model with discrete ε and a
large number of support points.
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The stage game payoffs in the latter game are given by:

P 1

P 2

1 0

1 α− ε1, α− ε2
9
4α− ε1, 0

0 0, 9
4α− ε2 0, 0

Figure 2 compares the equilibrium payoff sets of the non-stochastic and stochastic version of game

ΣS (left panel) and the Cournot entry game (right panel). Note that due to symmetry the V set in

ΣS without shocks is just a straight line connecting stage game payoffs in the two Nash equilibria.

However, once we add the stochastic shocks the game is not necessarily symmetric and the V set

will have a non-empty interior for some values of ε. As a result, the V set in the stochastic game

has a non-empty interior as well. The V sets in the stochastic game exclude some low payoff pairs

from the non-stochastic version since now players can condition their strategies on the realizations

of the shocks and, as a result, achieve better outcomes.

We can view a game with finite support of shocks as an approximation of a game with continuous

Fε where the approximation becomes more precise as the number of support points, M , grows. For

the purpose of inference we can make M →∞ as the sample size T →∞.

Finally, it is worth noting that, although the probabilities p(a) depend only on the continuation

value contrasts, e.g. D1
11 = v1(1, 1) − v1(1, 0), D2

11 = v2(1, 1) − v2(0, 1), working with the value

contrasts as a primitive of the game is not that convenient because the restriction V ∈ V(α)4

may put some non-trivial restrictions on the set of equilibrium D’s. For example, setting D1
11 =

max(v1,v2)∈V v1−min(v1,v2)∈V v1 and D2
11 = max(v1,v2)∈V v2−min(v1,v2)∈V v2 may not be feasible since

the points (max(v1,v2)∈V v1,max(v1,v2)∈V v2) and (min(v1,v2)∈V v1,min(v1,v2)∈V v2) may not belong to

the V set. Thus, we work with the equilibrium payoffs V rather than value contrasts because this

allows us to handle the constraints more easily.

5 Inference

We suggest using maximum likelihood for inference. In practical applications some components of

the payoff vector, X, are observed. They usually enter payoffs linearly and we are interested in

estimating their coefficients, β = (β1, β2). Thus, all the probabilities below should condition on X.
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We suppress this conditioning and discuss adding covariates to the model in Section 6.

We assume that the discount factor δ is known so the goal is to estimate a confidence set for

θ1 ≡ (α, β), θ1 ∈ Θ1 ⊂ Rd1 . We allow for any equilibrium selection mechanism π ∈ [0, 1] but restrict

FV to be degenerate:

Assumption INF1. All observations are generated from a unique V .

If the data is pooled across markets, the latter restriction imposes that the same dynamic

equilibrium is played in different markets (similarly to Bajari et al. (2007)).6 Let θ2 ≡ (π, V ) ∈

Θ2(θ1) where Θ2(θ1) is the correspondence mapping values of θ1 to the sets of corresponding

continuation values V and the set of feasible selection probabilities π. Further, θ = (θ1, θ2) ∈ Θ ⊂

Rd, d = d1 +d2. As in Chen et al. (2018) we suggest using supremum of the profiled likelihood ratio

statistic for inference and building the confidence set as a collection of points for which the LR

statistic falls below the critical value from the asymptotic distribution of this sup-profiled statistic.

We observe a sample of action pairs {Yt}Tt=1. Let p(a|θ) denote the model implied probabilities

when parameters are set to θ. Denote γa(θ) = p(a|θ)−p(a|θ0) for θ0 ∈ Θ0, where Θ0 is the identified

set for θ, and let the vector γ(θ) ≡ [γ11(θ) γ10(θ) γ01(θ)]′ ∈ Γ collect the choice probabilities.

Then the likelihood of observing a given Yt can be written as:

p(Yt, θ) = γ11(θ)Y1tY2tγ10(θ)Y1t(1−Y2t)γ01(θ)(1−Y1t)Y2t(1− γ11(θ)− γ10(θ)− γ01(θ))(1−Y1t)(1−Y2t)

With some abuse of notation, we also write p(Yt, γ). Define the identified sets for θ and θ1 as:

Θ0 = arg sup
θ∈Θ

E0[log p(Yt, θ)] and Θ01 = arg sup
θ1∈Θ1

sup
θ2∈Θ2(θ1)

E0[log p(Yt, θ)]

where the expectation E0 is taken with respect to the true distribution of Yt, P0.

Once we fix V , Yt depends only on the realisation of εt. Thus, under Assumption ID1 we

can write the log-likelihood by LT (θ) =
∑T

t=1 log p(Yt, θ).
7 For a candidate value θ̃1 the profiled

6Otsu et al. (2016) develop tests for credibility of pooling markets in dynamic Markov games.
7If data come from N markets, replace T with NT everywhere (this assumes the same equilibrium is played in all

markets).
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likelihood ratio statistic is defined as:

LRT (θ̃1) = 2

[
sup
θ∈Θ

LT (θ)− sup
θ2∈Θ2(θ̃1)

LT (θ̃1, θ2)

]
+ op(1) (3)

where the oP (1) term accommodates approximation error coming from using a discrete grid for ε

when calculating V sets (and optimization error). Similarly to Chen et al. (2018) we will calculate

the 100κ% confidence set for the identified set Θ01 as:

Θ̂κ
01 = {θ1 : LRT (θ1) ≤ cκ}

where cκ is the κ quantile of the asymptotic distribution of supθ1∈Θ01
LRT (θ1).

Obtaining asymptotic distribution of the likelihood ratio statistic in our case is difficult because

the second supremum in (3) will often be attained at the boundary of the parameter space Θ2(θ̃1)

and the asymptotic distribution will depend on the shape of the local parameter space at this

boundary (which will in turn depend on the value of θ1). Given these difficulties we focus on

obtaining an upper bound on the critical value.

Note that situation here is different than in the missing data example in Chen et al. (2018) as

local parameter space at θ ∈ Θ cannot be characterized as a simple translation of the null parameter

space and, as a result, their Assumption 4.7 cannot be verified. Thus, we cannot use χ2
1 quantile

as an upper bound on our critical value.8 Additionally, although their Procedure 2 is applicable in

our model, it involves repeated computation of the level sets of the likelihood for each MCMC draw

(see Appendix A.2. in their article) which is prohibitively costly in our setup as the likelihood is

nonlinear and each evaluation requires recomputing the constraint set.

Let I0 denote the Fisher information matrix:

I0 = −E0[∂2 log p(y, γ0)/∂γ2].

where γ0 = γ(θ0), θ0 ∈ Θ0. We say that a sequence of sets ΓT covers a set K if there is a sequence

of closed balls of radius kT → ∞ centred at the origin, BkT , such that ΓT ∩ BkT = K ∩ BkT with

8Our Monte Carlo simulations (not reported here) also confirm that χ2
1 critical value fails to provide required

coverage.
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probability approaching one (see p. 1987 in Chen et al. (2018)).

Assumption INF2. We have:

(a) Θ1 is a compact, nonempty subset of R and Θ2(θ1) is a compact, convex, nonempty subset of

Rd2 for every θ1 ∈ Θ1.

(b) supθ2∈Θ2(θ1) LT (θ1, θ2) is quasi-concave in θ1.

(c) E0[∂ log p(y, γ)/∂γ] = 0 has only one (interior) solution γ0 = 0.

(d) There exists a neighbourhood N ⊂ Int(Γ) of γ0 on which log p(y, γ) is twice continuously

differentiable for each y, with first derivative in L2(P0), and supγ∈N ‖∂2 log p(y, γ)/∂γ2‖ ≤ l̄(y)

for l̄ ∈ L2(P0).

(e) There exists a neighbourhood Nθ of Θ0 on which γ(θ) is twice continuously differentiable with

second derivatives bounded uniformly over Nθ.

(f) I0 is non-singular and I0 = E0

[
∂ log p(y,γ)

∂γ
∂ log p(y,γ)

∂γ

′]
.

(g) The local parameter space ΓoT (θ1) = {
√
T I1/20 γ(θ1, θ2) : (θ1, θ2) ∈ ΘoT } covers a closed convex

cone K(θ1) ⊂ R3, respectively, for every θ1 ∈ Θ1, where ΘoT is a sequence of small neighbour-

hoods of Θ0.

Assumption (a) is satisfied in our setup because Θ2(θ1) = [0, 1]×V(θ1) and V(θ1) is guaranteed

to be convex (see Abreu & Sannikov (2014)).9 Assumption (b) implies that supθ1∈Θ01
LRT (θ1) is

reached at the endpoints of the marginal identified set Θ01. Denote these endpoints by θ1 and θ1.

Assumptions (c)-(g) allow us to obtain quadratic approximation to the likelihood with respect to

probabilities γ using Proposition 5.1 in Chen et al. (2018). They imply that the choice probabilities

are identified from the population likelihood (but not θ).

Let ∆θ1 = ∂γ(θ0)/∂θ′2 for θ0 = (θ1, θ2) ∈ Θ0. In the simplest case, which is the leading case

in our model, each value of the structural parameter θ1 in the identified set Θ01 corresponds to a

unique likelihood maximising value θ2. This happens if the identified set is a manifold which is not

parallel to any of the axes and implies that the θ2 in the definition of ∆θ1 is unique.

9The approximation to V dicussed in Section 4 remains convex as Minkowski sum preserves convexity.
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Assumption INF3. We have:

(a) θ∗2(θ1) = arg maxθ2∈Θ2(θ1) LT (θ1, θ2) is a singleton for any θ1 in the neighbourhood of Θ01.

(b) ∆θ1 has full row rank in the neighbourhood Nθ.

A sufficient condition for part (a) is strict quasi-concavity of LT (θ1, θ2) in θ2. Although this

cannot always be easily verified analytically, problems with convergence of the numerical optimi-

sation algorithms would usually signify violation of this condition. Part (b) is usually innocuous

in our model as it merely requires that choice probabilities are not collinear in parameters. This

assumption is similar to conditions in Lemma 1 in Kline & Tamer (2016).10 If Assumption INF3

does not hold, one can still use the chi-square critical value described in Section 5.2 to obtain the

desired (conservative) confidence set for θ1.11

We say that the set Θ is approximated at θ0 by a cone Kθ0 if:

inf
s∈Kθ0

‖(θ − θ0)− s‖ = o(‖θ − θ0‖) θ ∈ Θ

inf
θ∈Θ
‖(θ − θ0)− s‖ = o(‖s‖) s ∈ Kθ0

Theorem 1. Let Θ2(θ1) and Θ2(θ1) be approximated at θ2 such that θ0 = (θ1, θ2) ∈ Θ0 or θ0 =

(θ1, θ2) ∈ Θ0 by cones K2(θ1) and K2(θ1), respectively. If Assumptions INF1-INF3 hold, then:

sup
θ1∈Θ01

LRT (θ1) = max
θ1∈{θ1,θ1}

{
inf

s∈K2(θ1)
‖VT −∆θ1s‖2

}
+ op(1) (4)

where VT = I−1/2
0

1√
T

∑T
t=1

∂ log p(Yt,γ0)
∂γ asymptotically follows as a multivariate standard normal

distribution.

Theorem 1 shows that the asymptotic distribution of our statistic is equivalent to the distri-

bution of the maximum of two chi-bar square distributions (cf. Proposition 3.4.1 in Silvapulle

& Sen (2001)). Note that this bound is useful only if the probabilities γ(θ0) are not flat in θ for

10Condition INF3(b) is akin to constraint qualification conditions in the stochastic programming literature.
In fact, it is a localized version of the linear independence constraint qualification for equality constraints:
γ0 − [p((1, 1), θ) p((1, 0), θ) p((0, 1), θ)]′ = 0, where the first component of θ is fixed at some θ1 in the small
neighbourhood of the identified set. See Kaido et al. (2020) for a discussion on how constraint qualifications relate
to standard assumptions in the moment inequality literature.

11In Appendix E we discuss how to adjust our inference procedure in Section 5.1 if Assumption INF3 does not
hold.
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θ0 = (θ1, θ2) or θ0 = (θ1, θ2), which is guaranteed in our repeated game model (note that derivatives

of γ involve density of the shocks, which is non-zero everywhere under standard assumptions).

5.1 Simulated critical value

Using Theorem 1 for inference on the identified set Θ01 presents both computational (calculation

of constraint sets) and theoretical (parameter on boundary) challenges. For example, simply boos-

trapping our criterion function will not lead to a valid critical value. Thus, in order to provide

a feasible inference procedure we make some simplifying assumptions and opt for a moderately

conservative critical value.

5.1.1 Simplified V set

Firstly, note that using our likelihood criterion implies that we have to recalculate the V set, a

convex polytope, for each candidate value of θ1. This is computationally heavy, and barely feasible

in realistic applications given the current state of computational resources. Thus, we simplify our

procedure by enlarging the continuation payoff set V to a cube:

Assumption INF4. Θ2(θ1) is a cube in Rd2.

Although this may result in a larger confidence set than implied by the general procedure in the

previous section, it significantly simplifies computation of the critical value. Firstly, it allows us to

track only the minimal and maximal values of the V set which considerably cuts the time needed

to compute the profiled likelihood in (3). Secondly, it allows us to derive a simple upper bound on

the asymptotic distribution described in Theorem 1 as now the local parameter space is an orthant

in the least favourable case.

With this simplification the quantiles of the chi-bar square random variables described in The-

orem 1 can be calculated using the formulas in Kudo (1963). However, the maximum in the

formulation of the asymptotic approximation in (4) complicates obtaining the critical values as chi-

bar square random variables under the maximum are correlated. Fortunately, with our extended

V set we can derive a conservative critical value.
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5.1.2 Bounding critical value from above

The first step in applying Theorem 1 lies in estimating ∆θ1 , for which we need to estimate ∂γ(θ0)/∂θ

for θ0 = (θ1, θ2) and θ0 = (θ1, θ2). Thus, application of our results requires a preliminary estimate

of the extreme points of the identified set Θ0. We follow Chernozhukov et al. (2007) and suggest

estimating these extreme points by:

(θ̂1, θ̂2) : θ̂1 = min {θ1 : LRT (θ1) ≤ eT } ; θ̂2 = arg sup
θ2∈Θ2(θ̂1)

LT (θ̂1, θ2)

(θ̂1, θ̂2) : θ̂1 = max {θ1 : LRT (θ1) ≤ eT } ; θ̂2 = arg sup
θ2∈Θ2(θ̂1)

LT (θ̂1, θ2)

where eT = log(log(T )) or eT = log(T ).12

The next step is to estimate the local cones K2(θ1),K2(θ1). This part is challenging as any

sampling error in estimation of θ1 may lead to incorrect estimate of K2(θ1). For example, even if

K2(θ1) was an orthant in Rd2 , K2(θ̂1) will likely be larger than an orthant, e.g. a half-space, even

when T is relatively large.

Figure 3: Worst-case local parameter space

Θ2(θ̂1)

θ̂2
C
θ̂1

KLF (θ̂1) K2(θ̂1)

Note: The arcs mark local parameter spaces corresponding to different θ2 ∈ Θ2(θ̂1)

Instead, we choose to approximate K2 by the closest least favourable local parameter space,

12If one believes that the degeneracy condition in Chernozhukov et al. (2007) is satisfied, one can use eT = 0 or
eT = o(1).
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namely the orthant corresponding to the corner of the cube closest to θ̂1 or θ̂1.13 We illustrate this

construction in Figure 3 in a simplified setup in which Θ2(θ1) is a square in R2 and Assumption

INF3 holds. In this example θ̂2 lies on the edge of the parameter space so the local parameter

space, K2(θ̂1), is a half-space R× R+. Instead of using K2(θ̂1), we take the local parameter space

corresponding to the corner closest to θ̂2, namely KLF (θ̂1) = R2
+.

This construction produces a critical value that, in general, will be larger than the critical value

from the asymptotic distribution in Theorem 1. The intuitive reason for why the bound is only

moderately conservative is the following. Consider the game ΣS . In order to match the observed

probabilities of observing (1,1) using a very low value of α we have to set the value contrasts D1
11

and D2
11 high. In other words, in order to entice players to cooperate on 1 when stage game payoffs

from doing so are low we need to promise them high continuation values. As a result the lower and

upper end of the identified set for α likely correspond to D’s being in the corners of the feasible set

for these contrasts.

Define Cθ1 as the set of all corners of the cube Θ2(θ1). Formally, we define our simulated critical

value, cκ, as the estimate of the κ quantile of the distribution of:

QLF ≡ max
θ1∈{θ̂1,θ̂1}

{
inf

s∈KLF (Cθ1 )
‖VT −∆θ1s‖2

}

where Cθ1 ∈ Cθ1 is defined as:

Cθ1 = arg min
C∈Cθ1

‖C − θ∗2(θ1)‖

for θ∗2(·) defined in Assumption INF3. KLF (Cθ1) is an orthant in Rd2 approximating the parameter

space Θ2(θ1) at Cθ1 . Display 1 summarizes our procedure.14

13This resembles the geometric moment selection procedure in static entry games developed by Bontemps & Kumar
(2020). However, their setup is very different than ours.

14An alternative bound on the critical value would come from setting KLF (θ̂1) to a cone with a smaller solid angle
out of the conical hulls of ∆θ̂1

and ∆ˆ
θ1

(least favourable cone) and setting its mirror image with respect to the origin

as KLF (θ̂1) (least favourable alignment of the cones). This procedure produces similar but slightly more conservative
critical values.
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Display 1. Simulation procedure:

1. Estimate θ1 and θ1 by:

θ̂1 = min{θ1 : LRT (θ1) ≤ eT } θ̂1 = max{θ1 : LRT (θ1) ≤ eT }

where eT = log log(T ) or eT = log(T ).

2. Estimate ∆θ1
and ∆θ1

by ∆θ̂1
= ∂γ(θ̂1, θ̂2)/∂θ′2 and ∆

θ̂1
= ∂γ(θ̂1, θ̂2)/∂θ′2.

3. Find the corners, Cθ̂1
and C

θ̂1
, of the parameter space closest to θ̂2 and θ̂2.

4. Simulate:

max

 inf
s∈KLF (Cθ̂1

)
‖V −∆θ̂1

s‖2, inf
s∈KLF (Cˆ

θ1
)
‖V −∆

θ̂1
s‖2


by drawing large number of standard normal vectors V , and obtain the critical value cκ by

taking the κ quantile of the empirical distribution of this statistics across the simulation draws.

5. Estimate the κ confidence set for θ1 by:

Θ̂κ
01 = {θ1 : LRT (θ1) ≤ cκ}

Note that infs∈KLF (Cθ1 ) ‖VT −∆θ1s‖2 is a convex program and can be solved repeatedly quite

fast using packages like CVX in MATLAB. Additionally, the evaluations of LRT (θ1) in the first

step of the procedure can be stored and reused to calculate the confidence set in the final step. Note

that if we were to use Procedure 2 in Chen et al. (2018) we would have to calculate numerically the

(marginal) level sets of p(·, (θ1, ·)) with respect to the Kullback-Leibler distance for each MCMC

draw from the posterior distribution of θ.15 As it is not uncommon in the Bayesian estimation

15On top of that, the SMC generation of the posterior draws, described in Appendix A of Chen et al. (2018),
involves repeated evaluation of the likelihood, which makes it even less attractive in a setup where such evaluations
are costly, like the one in this article.
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for the number of required MCMC draws to reach several thousand, application of that procedure

is rather unattractive in our setup.16 Comparing the results of Monte Carlo simulations in Chen

et al. (2018) to those in Section 7 we conclude, however, that the simplified computation in our

inference procedure comes at a cost of increased conservativeness, thus visualising the trade-off

between computation and conservativeness that the researcher faces when choosing between these

two methods.

We need to make the following technical assumptions in order to justify our procedure:

Assumption INF5. Cθ1, as a function of θ1, is constant in θ1 in the neighbourhoods of θ1 and

θ1.

This high-level assumption basically excludes a knife-edge situation in which θ2 = θ∗2(θ1) and

θ2 = θ∗2(θ1) are (almost) equidistant from the corners of the parameter space and, as argued above,

should be generally satisfied in our setup as the structure of our model suggests that θ2 and θ2 will

be located at or close to the corners of the parameter space.

Theorem 2. If assumptions of Theorem 1 and Assumptions INF3-INF5 hold, then for any c ≥ 0:

P

(
sup

θ1∈Θ01

LRT (θ1) ≤ c
)
≥ P

(
max

θ1∈{θ̂1,θ̂1}

{
inf

s∈KLF (Cθ1 )
‖VT −∆θ1s‖2

}
≤ c

)
+ o(1). (5)

Theorem 2 confirms that our simulated critical value provides valid, but possibly conservative,

inference for the identified set Θ01. Our Monte Carlo simulations reported in Section 7 suggest that

in fact this procedure is only mildly conservative, thus we recommend using it in applications.

Finally, observe that our bound on the critical value can also be applied in a static game, i.e.

δ = 0. Then, θ2 corresponds to the static selection probability, π, and the optimisation problems

involved in simulations become infs∈R− ‖VT − ∆θ̂1
s‖2 or infs∈R+ ‖VT − ∆θ̂1

s‖2 as the worst case

local parameter space for π is either R− or R+. These problems can be solved analytically so

there is no need for repeated numerical optimisation. Thus, our approximation may prove useful in

the context of empirical static games when applying currently available bootstrap procedures (e.g.

Kaido et al. (2019)) is computationally costly and assumptions listed above hold.17

16Note that the evaluation of p(·, (θ1, ·)) for different draws of θ1 can be run in parallel, which speeds up computation.
Thus, the computational cost of this method may be manageable if one has access to a large number of computing
nodes.

17Additionally, it applies in static games with box constraints on the payoff parameters α.
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5.2 Simple conservative critical value

The procedure in the previous section, though feasible, still requires preliminary estimation of the

identified set and a large number of convex optimisations. Therefore, in this section we suggest an

alternative procedure that approximates the critical value from above. This bound is noticeably

more conservative than the one implied by Theorem 2 but instead does not require simulation or

additional computation in order to obtain the critical value.

Theorem 3. If Assumption INF2 holds, then:

lim
T→∞

P

(
sup

θ1∈Θ01

LRT (θ1) ≤ cχκ
)
≥ κ

where cχκ is the κ quantile of the chi-square distribution with 3 degrees of freedom.

Theorem 3 is convenient because calculation of the critical value cχκ is straightforward, though

as shown in Section 7 this critical value gives much more conservative inference than our simulated

critical value cκ. In practice, one can compare confidence sets resulting from using both critical

values for a chosen parsimonious specification of the model and apply the chi-square critical value

for the remaining specifications only if the confidence sets do not significantly differ. Additionally,

note that Theorem 3 does not require Assumption INF3, thus cχκ can be applied in more general

circumstances than cκ.

The idea behind the conservative bound is similar to the conservative bound in Rosen (2008) as

we basically assume that the constraints on the three probabilities (γ11(θ), γ10(θ), γ01(θ)), implied

by the constraints on θ, are binding, though we have a likelihood model rather than a moment

inequality model.

6 Model with covariates

The previous discussion did not explicitly include covariates. In practice, however, one may be

interested in estimating the effect of observed characteristics of the agents and markets on the

payoffs. For example, Ciliberto & Tamer (2009) estimate and simulate the effect of the Wright

amendment on entry and exit into the Dallas airline markets. All the inference procedures described
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above can accommodate presence of covariates. However, doing so entails some conceptual and

computational issues.

Firstly, this poses some conceptual dilemma as now the econometrician observes part of the

stochastic component of the payoff vectors, X = (X1, X2), hence she could potentially use history

of the covariates to restrict the continuation payoff set V, i.e. rule out some equilibria in the

game. As this would prohibitively complicate the computation of the likelihood and it is not clear

if this would allow us, in fact, to obtain much sharper bounds (note that the unobserved ε’s have

unbounded support), we assume that the econometrician does not use this knowledge, i.e. we treat

X’s just as ε’s in the computation of the V set. Also we assume that the covariates are either i.i.d.

or time-invariant (if we observe multiple markets/games in each period).

Secondly, the presence of covariates complicates computation – now V depends both on (X1, X2)

and (α, β), where β is the vector of covariate coefficients. In order to deal with this complication

we: 1) discretize (X1, X2) and 2) approximate the boundaries of V, i.e. vmin, vmax, by a polynomial

spline in (α, β). If we take as a point of departure the analysis of a partially-identified static game

1) can hardly be seen as a restriction as it is present also in the empirical analysis of that simple

game (see Ciliberto & Tamer (2009)). Also our experience shows that the boundaries vmin, vmax

tend to be smooth functions of (α, β) so the polynomial approximation works very well in practice.

Thirdly, now the “static” selection probability π may depend on X, which increases the dimen-

sionality of the optimisation problems in our inference procedure. In order to address that, one

may approximate π(X1, X2) by an auxiliary parametric model, for example probit or logit (like in

Bajari et al. (2010)).18

7 Monte Carlo simulations

7.1 Cournot entry game

In order to check the finite sample performance of our methods we performed a small Monte

Carlo study using Cournot entry game example described above with independent shocks following

logistic or Normal distribution N(0, 4). As mentioned above, to simplify computation, we do not

18Here an attractive alternative may be using the moment inequality approach described in Appendix C as it does
not involve the selection probability π.
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calculate the full continuation payoff set V(α) but only calculate the extreme values of this set:

vmin = min{v : v ∈ V(α)} and vmax = max{v : v ∈ V(α)}, and use [vmin, vmax]4 in place of the

continuation payoff set.

In simulations we set the true value α = 1. The marginal identified set for α in the logistic

model is Θ01 = [0.92, 1.1] for a discount factor δ = 0.55 and Θ01 = [0.76, 1.89] for a discount factor

δ = 0.75.19 For the normal model, these sets are Θ01 = [0.95, 1.09] and Θ01 = [0.8, 2.03]. Results

are given in Tables 1-2. We analyse performance of both the critical value implied by Theorem 2

(Simulated crit. val.) and Theorem 3 (χ2
3 crit. val.).

The simulations confirm implications of our theoretical results – both critical values deliver

coverage probabilities that are close or above nominal values. MC simulations confirm also that χ2
3

critical value is a valid but, as expected, conservative upper bound on the critical value from the

asymptotic distribution of our likelihood ratio statistic.

Our test has good power against values outside the identified set for δ = 0.55 but for δ = 0.75

it lacks power above the upper end of the identified set (especially with logistic shocks), which

suggests that marginal likelihood is very flat at this end and resulting confidence sets will be quite

wide.

7.2 Cournot entry game with covariates

We extend the Cournot entry game example to include observed covariates:

P 1

P 2

1 0

1 α+X1β − ε1, α+X2β − ε2
9
4α+X1β − ε1, 0

0 0, 9
4α+X2β − ε2 0, 0

We draw both X1 and X2 from the uniform distribution over {−1,−0.5, 0, 0.5, 1}. As now the V set

depends on α, β and (X1, X2), in order to simplify computation we generate a sample of vmin and

vmax for given (X1, X2) and different values of α and β and approximate the relationship between

(vmin, vmax) and α, β by a 6-th order bivariate polynomial. For simplicity, π is assumed to be the

19The maximization of the log-likelihood takes longer with larger δ, which is in line with the intuition that the
likelihood should be flatter as the discount factor increases and the set of equilibrium values V grows (cf. Folk
theorem). Thus, we do not perform full scale simulations for δ = 0.95. Appendix D contains some partial results,
which are similar to the ones here.
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same for different values of (X1, X2). Otherwise the MC designs are the same as in the simple

model above.

We report only the results for δ = 0.75 (see Table 3). The marginal identified set for α in the

logistic model is Θ01 = [0.33, 3.25] and Θ01 = [0.38, 2.78] in the normal model. The results confirm

previous conclusions, namely that our simulation method is not excessively conservative, in fact it

produces coverage probabilities that are close to the nominal values, which is encouraging. Using

the chi-squared with three degrees of freedom is far more conservative, just as in the model without

covariates. Overall, the results in Table 3 confirm that introducing covariates into the model does

not essentially change the properties of our inference procedures.

8 Empirical illustration: Wright Amendment

We employ our framework to re-evaluate the Wright Amendment experiment in Ciliberto & Tamer

(2009) (CT henceforth). The Wright Amendment, passed into law in 1979, restricted airline service

from Dallas Love airport in order to stimulate growth of Dallas/Forth Worth, permitting flights only

to/from Texas, Louisiana, Arkansas, Oklahoma, New Mexico, Alabama, Kansas and Mississippi.

The Amendment was partially repealed starting from 2006 and fully withdrawn in 2014. Using a

static game model CT compare the predicted changes in market service out of Dallas Love with

and without the amendment and find very large positive effects of repealing the amendment on the

number of served markets. As the repeal is predicted to especially benefit Southwest Airlines the

authors conclude that the prolonged binding of the Amendment was meant to protect American

Airlines monopolies in markets out of Dallas/Fort Worth.

They interpret these effects as short run effects because their model does not involve dynamic

dimension. However, dynamic strategic responses are important in this context. Firstly, a repeated

game model without Markov assumption allows collusive behaviour, which helps to explain (1, 1),

(1, 0) and (0, 1) outcomes in the game. Secondly, changes in the market conditions will affect firms

decisions to be present in the market and the dynamic model takes that into account. In fact, as

Table 4 shows, there is a lot of entry and exit in the US airline market across time. For example,

Delta dropped out of 42% of the markets they served in 1990, even more strikingly, in 2010 they

came back to 9.5% of their 1990 markets after not serving them in 2000. Thus, the network of
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served markets is far from stable and carriers often react to changing market conditions by exit

and entry.

Table 4: Share of markets by presence of major carriers over time (in %)

Presence in Q2 1990 - Q2 2000 - Q2 2010 American Delta United US Airways Southwest

in - in - in 21.7 24.8 26.1 13.9 59.9
in - out - in 5.6 9.5 3.3 5.3 15.8
in - out - out 60.3 42.2 50.4 56.5 17.3
in - in - out 12.5 23.5 20.3 24.3 7.1

Note: T100 Market data, flights with fewer than 20 passengers in 1990 dropped. Markets are defined as directional
routes between origin and destination airports (irrespective of the number of stops on the way). ”In” means that a
carrier served at least one flight on the route.

In order to address these concerns we redo the experiment using our repeated game model

focusing on the interaction between American (AA) and Southwest (WN) in the markets out of

Dallas. We use quarterly DB1B and T100 data from 1993 to 2017. We estimate our model using

the following covariates: market size, the size of the market calculated as the geometric mean of the

population of the endpoint cities, Wright, indicating that the market was restricted by the Wright

amendment, airport presence, which gives the average fraction of markets served from the endpoints

by American or Southwest and cost which is equal to the difference between the “origin-closest hub-

destination” distance and the nonstop “origin-destination” distance divided by the latter distance

(see CT for detailed description and justification).

Table 5: Summary statistics

Mean Min Max

market size 3,675,950 1,750,056 10,968,557
Wright 0.356 0 1

AA airport presence 0.763 0.211 0.983
WN airport presence 0.367 0 0.713

AA cost 0.009 0 0.083
WN cost 0.238 0 2.811

Table 5 contains the summary statistics. There are 244 markets in our sample.20 The average

market covered a population of around 3-4 million people. As we focus on Dallas, the Wright

amendment affects a large fraction of markets – 35.6% of year-quarter-market observations in our

20Note that we assume that the same repeated game is played in each of these markets, thus we focus on, what we
believe to be, a homogenous group of Dallas markets.
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sample were affected by this law. The average AA airport presence is significantly higher and AA

cost significantly lower than in CT sample as they focus on a larger set of markets and only use data

from the second quarter of 2001. These numbers show that AA had a strong presence at Dallas

airports and that it mainly operated direct flights to all the destinations outside Dallas, which is

in line with the fact that Dallas has been traditionally a major hub for AA.

8.1 Estimation results

We estimate the confidence sets using our profiled likelihood criterion with simulated critical value

described in Section 5.1.1. We draw 1000 random standard normal vectors in order to obtain this

critical value. The stage game in our model has the form:

AA

WN

1 0

1 X1β − ε1, X2β − ε2 α+X1β − ε1, 0

0 0, α+X2β − ε2 0, 0

Thus, we restrict both the competitive effect (α) and the effect of covariates (β) to be the same for

AA and WN.21 We also assume that the selection probability π does not depend on (X1, X2), i.e. if

two equilibria are present in the normal form game in markets characterised by (X1, X2), firms play

one of them with the same probability as in markets characterised by (X̃1, X̃2) 6= (X1, X2). We

discretize all continuous variables as binary (below/above mean) and include a constant in both X1

and X2. We consider both strong (δ = 0.75) and weak (δ = 0.95) discounting of future payoffs by

the carriers and compare the results to the static case (δ = 0.00), i.e. when static game equilibrium

is played repeatedly. Table 6 contains the confidence sets estimated using our procedure.22

We observe that the data provides useful information about the underlying model parameters.

In particular, we can identify the sign of all coefficients besides the competitive effect and the cost

variable. Our estimates are also in the same ballpark as the estimates obtained using the static game

approach in CT. Our model, however, does not contain a lot of information about the competitive

21The motivation for using homogenous coefficients is computational. Note that allowing α and β to vary between
AA and WN would require evaluating the equilibrium continuation correspondence V for each candidate set of values
(αAA, αWN , βAA, βWN ), which significantly increases computational burden compared to the homogenous case.

22As in CT, routes from Dallas Love and Dallas/Fort Worth are separate markets so separate games are played in
these markets and AA cannot use DFW routes to fight WN Love routes.
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Table 6: Estimated confidence sets from repeated game with random states, Dallas market

δ = 0.75 δ = 0.95 δ = 0.00
Parameter 90% CS 95% CS 90% CS 95% CS 90% CS 95% CS

comp. effect (α) [-37.26, 33.92] [-37.26, 33.92] [-60.34 , 33.64] [-60.34, 33.64] [-0.2, -0.01] [-0.22, 0.00]
market size [0.34, 0.42] [0.32, 0.43] [0.33, 0.43] [0.32, 0.44] [0.32, 0.35] [0.31, 0.36]

Wright [-0.65, -0.54] [-0.66, -0.53] [-0.65, -0.54] [-0.67, -0.53] [-1.38, -1.33] [-1.39, -1.32]
airport presence [4.57, 4.67] [4.56, 4.68] [4.54, 4.7] [4.53, 4.71] [4.4, 4.46] [4.39, 4.46]

cost [-0.01, 0.09] [-0.03, 0.11] [-0.02, 0.1] [-0.03, 0.11] [-0.05, 0.12] [-0.07, 0.14]
constant [3.55, 3.96] [3.51, 4] [-3.42, 3.37] [-3.59, 3.37] [-2.95, -2.89] [-2.95, -2.89]

Note: Critical values for confidence sets calculated using simulated critical value described in Display 1 with 1000
random Normal draws. The sets were built using a grid search with step 0.01. The dataset contains 244 markets out
of/to Dallas.

effect as the estimated bounds are very wide and include both positive and negative values.23

Interestingly, the bounds on other coefficients are very tight, suggesting that these parameters are

close to being point-identified. As expected, the bounds obtained for the discount factor δ = 0.95

are, in general, wider than those for δ = 0.75 which corresponds to the fact that the set of possible

equilibrium continuation values V expands as the discount factor grows. Though, the difference in

the width of the confidence set is only pronounced for the competitive effect α, with bounds for

the near-to-point-identified parameters being very close for both discount factors.

Comparing the results to the static case, we can see that allowing multiple equilibria in the

dynamic dimension comes at the cost of much wider confidence intervals for the competitive effect

(and the constant). With δ = 0.00 we can identify the sign of α, similarly to CT. Interestingly,

imposing lack of dynamics leads to much more negative estimates of the effect of the Wright

amendment than in the general model, which is also in line with CT findings about the strong (or

even too strong) effect of the amendment on restricting competition on the Dallas airline market in

the static model. What seems to happen is that, in order to explain the difference in frequencies of

outcome (1, 0) in the “non-Wright” markets versus “Wright” markets (65% of the former are “AA

only” with 4% of the latter), the static model estimates a large effect of the Wright amendment.

Since the dynamic model can partly explain high frequencies of (1, 0) in non-restricted markets by

collusive equilibria, it produces more reasonable estimates of the effect of the Wright amendment.

The fact that the bounds for the Wright coefficient with δ = 0.00 are not contained in the

bounds for δ = 0.75 or δ = 0.95 suggests that imposing a static equilibrium in each period may be

23Note that the 90% and 95% confidence sets for α are the same. This is because we use a 0.01 step in the grid
search for building the confidence sets. The log-likelihood is steep around the CS endpoints so the difference in the
endpoints of 90% and 95% sets is less than 0.01.
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refuted by the data. This shows that combining repeated games theory with data puts meaningful

restrictions on the equilibria that might have been played in our dynamic game.

8.2 Policy experiment

Finally, we use our estimated confidence sets to simulate the effect of repealing the Wright amend-

ment from 2006. We look at the change in predicted probabilities in our model: p(1,1), p(1,0),

p(0,1), p(0,0), with the actual policy and the scenario in which the Wright amendment is in op-

eration throughout the sample period 1993-2017. In order to obtain the confidence sets for the

policy effects: 1) we take all possible combinations of extreme points of the confidence sets , 2)

we randomly draw 10000 parameter values from the estimated confidence sets, and for each point

selected in these ways we calculate the change in probabilities.24 Then we take the union of the

sets of estimated policy effects from 1) and 2). As in CT, we focus on markets out of Dallas Love

airport, which were restricted by the amendment. We use the 95% confidence sets from Table 6.

Table 7: Estimated effect of repealing the Wright amendment, 95% level

Change in probability (Wright - non Wright)

δ = 0.75 δ = 0.00
Both AA and WN p(1,1) [-0.177, 0] [-0.042, -0.029]

Only AA p(1,0) [-0.138, 0.163] [-0.311, -0.192]
Only WN p(0,1) [-0.048, 0.116] [-0.004, -0.002]
Not served p(0,0) [0, 0.103] [0.234, 0.344]

Note: The change in probabilities is calculated as the predicted probability assuming that the Wright amendment is
in place throughout the sample period 1993-2017 minus the predicted probability with actual trajectory of Wright.
The other variables are kept at their sample values.

Table 7 shows that keeping the Wright amendment in place would most likely decrease the

number of markets served by both AA and WN, even by up to 17.7%, and increase the number

of non-served markets by up to 10.3%. However, the results do not provide a decisive prediction

for what would happen with markets served only by AA or only by WN, with the possibility that

keeping Wright amendment in place would increase the number of these markets. These results

suggest that keeping the Wright amendment in force might have restricted competition in significant

number of markets, preventing entry of competitive airlines.

24For each configuration of the parameters we take θ2 = (π, V ) that maximizes the log-likelihood (see Assumption
INF3).
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Comparing our estimated policy effects with δ = 0.75 and the static case of δ = 0.00, we see that

the static model predicts much stronger effect of keeping the amendment in place on the number

of unserved markets than the dynamic model. However, it also predicts that this increase in the

number of unserved markets would come mainly at the cost of markets served only by AA, with

unambiguously negative effect of Wright amendment on the number of markets served only by this

carrier. Although we use a different dataset and a different model, our results with δ = 0.00 are

similar to the ones in Section 6 of CT. CT predict even a 63.84% drop in the number of non-served

markets after the repeal of the amendment, with possibly up to 47.44% of these markets served

by American and/or Southwest. We see that our dynamic model predicts much more modest, and

thus more plausible, effect of the Wright amendment.

The static game model with δ = 0.00 will generally have trouble generating collusive enter-enter

equilibria even without Wright restrictions. This explains a very small effect of lifting the Wright

amendment on the probability of both AA and WN entering observed in Table 7. In contrast,

the dynamic model facilitates appearance of collusive equilibria after lifting the amendment which

shows itself in a strong and unambiguous increase in the number of markets served by both carriers

as a result of this policy change.

Overall, our results in this section illustrate the usefulness of our approach to analysing repeated

strategic interactions between firms and show that combining the repeated games model with the

data may lead to interesting findings and improved analysis of strategic interactions in the US

airline market.

9 Discussion

Although we focus on repeated games with random states, our identification and inference ap-

proach can be extended to general stochastic games with state dependence. Recent advancements

in the analysis of these games (Abreu et al. (2016), Abreu et al. (2020)) provide readily available

procedures for computing equilibrium payoff sets, which can be naturally embedded into our econo-

metric approach. Additionally, the assumption of binary action sets made in our exposition can

be relaxed as the computation algorithm in Abreu & Sannikov (2014) allows non-binary actions

and our inference procedure in Display 1 applies in this case, though it is important to note that
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the computational burden increases with the dimension of the action space as dimension of the

continuation vector V grows exponentially with |A|.

As we allow a wide range of possible equilibria, the confidence sets may be quite large in

empirical applications. One may restrict the number of possible equilibria in these games by

refining the equilibrium concept, e.g. focusing on strategy-proof equilibria, which should result in

smaller continuation payoff sets V and narrower bounds on the parameters of interest.

We focus on entry decisions in the dynamic context in our paper, thus we leave out the pricing

decisions. Goolsbee & Syverson (2008) show that airlines may adjust prices in advance when faced

with the threat of entry, thus adding pricing to the model would be an important extension. See

Ciliberto et al. (2021) for a recent effort to model entry and pricing decisions at the same time

using a static game.
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Appendix

A Mathematical Proofs

A.1 Proof of Theorem 1

First note that under quasi-concavity:

inf
θ1∈Θ01

sup
θ2∈Θ2(θ1)

LT (θ1, θ2) = min
θ1∈{θ1,θ1}

sup
θ2∈Θ2(θ1)

LT (θ1, θ2) (6)

Further, Assumptions INF2(c)-(g) allow us to apply Proposition 5.1 and Lemma F.1 in Chen et al.

(2018) in order to obtain quadratic expansion of the likelihood in γ:

sup
θ∈ΘoT

2LT (θ) = 2
T∑
t=1

log p(Yt, γ0) + ‖VT ‖2 − inf
θ∈ΘoT

‖
√
T I1/20 γ(θ)− VT ‖2 + op(1) =

= 2
T∑
t=1

log p(Yt, γ0) + ‖VT ‖2 + op(1)

where VT = I−1/2
0

1√
T

∑T
t=1

∂ log p(Yt,γ0)
∂γ . Now for the restricted part:

sup
θ∈ΘoT (θ1)

2LT (θ) = 2

T∑
t=1

log p(Yt, γ0) + ‖VT ‖2 − inf
θ=(θ1,θ2)∈ΘoT

‖
√
T I1/20 γ(θ)− VT ‖2 + op(1) =

= 2

T∑
t=1

log p(Yt, γ0) + ‖VT ‖2 − inf
κ∈ΓoT (θ1)

‖κ− VT ‖2 + op(1) =

= 2
T∑
t=1

log p(Yt, γ0) + ‖VT ‖2 − inf
κ∈K(θ1)

‖κ− VT ‖2 + op(1)

This implies:

LRT (θ1) = 2

[
sup
θ∈ΘoT

LT (θ)− sup
θ∈ΘoT (θ1)

LT (θ)

]
= inf

κ∈K(θ1)
‖κ− VT ‖2 + op(1)
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Now use Assumption INF3 and proceed similarly to Shapiro (1985). Note that the cone K(θ1) can

be approximated by:

{
∂γ(θ0)

∂θ′2
s : s ∈ K2(θ1), θ0 = (θ1, θ2) ∈ Θ0

}
= {∆θ1s : s ∈ K2(θ1)}

for θ1 ∈ {θ1, θ1}, which implies that:

LRT (θ1) = inf
s∈K2(θ1)

‖VT −∆θ1s‖2 + op(1)

and together with (6) concludes the proof.

A.2 Proof of Theorem 2

First we will demonstrate that θ̂1 →p θ1 and θ̂1 →p θ1 as T → ∞. For this purpose we apply

Theorem 3.1 in Chernozhukov et al. (2007). Their condition C.1 is satisfied as follows: part (a)

follows from our Assumption INF2(a), lower-semicontinuity of E[log p(Yt, θ)] in part (b) holds in

the neighbourhood Nθ of Θ0 by our Assumptions INF2(d) and INF2(e), part (c) follows from

our continuity assumptions on p(Yt, θ) and discreteness of Yt, uniform convergence in part (d)

can be shown to hold over Nθ by applying Jennrich’s ULLN with the help of our Assumptions

INF2(a),(d),(e) and noting that 0 ≤ p(Yt, θ) ≤ 1.

Next recall that BkT denotes a ball centred at zero with radius kT →∞ and define KBkT (θ1) =

{κ : κ = ∆θ1s, s ∈ BkT }. If ∆θ1 = 0, then trivially infs∈KLF (θ1) ‖VT−∆θ1s‖2 = infs∈KLF (θ1)∩BkT
‖VT−

∆θ1s‖2 so we focus on the case when ∆θ1 6= 0. Note that in this case KBkT (θ1) is an ellipsoid. For

θ1 in the neighbourhoods of θ1 and θ1 we have:

P

(
inf

s∈KLF (θ1)
‖VT −∆θ1s‖2 − inf

s∈KLF (θ1)∩BkT
‖VT −∆θ1s‖2 6= 0

)
≤ P (VT 6∈ KBkT (θ1))

but as the elliptic radi grow with kT we have that P (VT 6∈ KBkT (θ1)) → 0 as T → ∞. Thus we

can write:

inf
s∈KLF (θ1)

‖VT −∆θ1s‖2 = inf
s∈KLF (θ1)∩BkT

‖VT −∆θ1s‖2 + op(1) (7)
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Assumption INF5 implies that KLF (θ1) ∩ BkT is a continuous (compact-valued) correspondence

around θ1 and θ1. Additionally ∆θ1 is continuous in θ1 in this neighbourhood by Assumption

INF2(e). Thus, we can apply Berge’s maximum theorem to conclude that infs∈KLF (θ1)∩BkT
‖VT −

∆θ1s‖2 is a continuous function of θ1. Now (7) and continuous mapping theorem imply:

inf
s∈KLF (θ̂1)∩BkT

‖VT −∆θ̂1
s‖2 = inf

s∈KLF (θ1)
‖VT −∆θ1

s‖2 + op(1)

inf
s∈KLF (θ̂1)∩BkT

‖VT −∆
θ̂1
s‖2 = inf

s∈KLF (θ1)
‖VT −∆θ1

s‖2 + op(1) (8)

as T →∞.

Next note that KLF (θ1) ⊆ K2(θ1). This is trivially satisfied when K2(θ1) = Rd2 or K2(θ1) is

an orthant itself. Consider the remaining case when K2(θ1) = Rd+
+ × Rd−− × Rd2−d+−d− where 0 ≤

d++d− ≤ d2−1. Now we must have KLF (θ1) = Rd+
+ ×R

d−
− ×Rd̃+×Rd̃− with d̃++d̃− = d2−d+−d−.

To see that, without loss of generality, suppose that KLF (θ1) = R−×Rd+−1
+ ×Rd−− ×Rd̃+×Rd̃− and

let C̃ be the corner associated with this parameter space and θ2 = θ∗2(θ1) be the profiled-likelihood-

minimising value. Now note that the first coordinate of C̃, C̃1, has to be different than the first

coordinate of θ2, θ2,1, but these are the same for the closest corner, i.e. Cθ1,1 = θ2,1. We have:

‖C̃ − θ2‖2 = |C̃1 − θ2,1|2 + ‖C̃−1 − θ2,−1‖2 > inf
C∈C
‖C−1 − θ2,−1‖2 = ‖Cθ1 − θ2‖2

which implies that C̃ cannot be the closest corner to θ2.

Finally, we have:

max

{
inf

s∈KLF (θ1)
‖VT −∆θ1

s‖2, inf
s∈KLF (θ1)

‖VT −∆θ1
s‖2
}
≥ max

{
inf

s∈K2(θ1)
‖VT −∆θ1

s‖2, inf
s∈K2(θ1)

‖VT −∆θ1
s‖2
}

which together with (8) concludes the proof.

A.3 Proof of Theorem 3

For a closed convex cone K let Ko denote its polar cone (see e.g. Section 14 in Rockafellar (1970)).

From the proof of Theorem 1 and Moreau’s decomposition theorem (note that K(θ1) is a closed
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convex cone by Assumption INF2(g)):

LRT (θ1) = ‖VT ‖2 − inf
κ∈Ko(θ1)

‖κ− VT ‖2 + op(1)

which implies LRT (θ1) ≤ ‖VT ‖2 + op(1) and

sup
θ1∈Θ01

LRT (θ1) ≤ max
θ1∈{θ1,θ1}

{‖VT ‖2, ‖VT ‖2}+ op(1) = ‖VT ‖2 + op(1)

and the result follows from VT being asymptotically N(0, I).

B Alternative definitions of market presence

In Table 4 an airline is present in the market if it operates at least one flight from the market origin

to market destination. Here we consider other definitions of market presence. First, we use DB1B

ticketing data, which contains 10% sample of airline tickets from reporting carriers, and redefine

market presence as selling at least 5 tickets for the specified route (see Table 8). Next, we use

T100 Segment data and redefine market as a segment of the trip, for example a flight from ORD

to MIA through DCA contains two segments ORD-DCA and DCA-MIA (using previous definition

this would only be a single market ORD-MIA).

Table 8: Share of markets by presence of major (ticketing) carriers over time (in %)

Presence in Q2 1993 - Q2 2002 - Q2 2012 American Delta United US Airways Southwest

in - in - in 43.4 61.1 74.8 42.8 86.8
in - out - in 9 5.9 9.2 12.3 4.8
in - out - out 37 23.1 12.8 27 6
in - in - out 10.6 9.9 3.2 17.9 2.4

Note: DB1B Market data, flights with less than 5 tickets in 1993 dropped. Markets are defined as directional routes
between origin and destination airports (irrespective of the number of stops on the way). ”In” means that a carrier
served at least one flight on the route.

The numbers in Table 8 significantly differ from those in Table 4 as ubiquitous codeshare and

interlining agreements drive a wedge between the definitions of operating and ticketing carrier. The

differences are smaller between Table 9 and Table 4. Despite these differences the main message

remains the same – there is substantial amount of entry and exit across time in the US airline
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market.

Table 9: Share of markets by presence of major carriers over time (in %)

Presence in Q2 1990 - Q2 2000 - Q2 2010 American Delta United US Airways Southwest

in - in - in 34 35.8 38.6 16.5 74.6
in - out - in 5 6.8 2.7 3.5 3.1
in - out - out 46.4 33.4 35.8 53.8 14
in - in - out 14.6 24.1 23 26.3 8.3

Note: T100 Segment data, flights with less than 20 passengers in 1990 dropped. Markets are defined as segments of
directional routes between origin and destination airports. ”In” means that a carrier served at least one flight on the
route.

C Moment inequality characterisation

For a non-empty A ( A let L(A;α, V ) denote the probability of observing some a ∈ A in equilib-

rium in the normal form game under the assumption that in the regions of multiple equilibria an

equilibrium in A is always selected. For simplicity let Assumption INF1 hold. Following Galichon

& Henry (2011) the marginal identified set for α can be characterised using moment inequalities

by:

ΘS
01 = {α : E0(1{a ∈ Aj}) ≤ L(Aj ;α, V ), Aj ( A, V ∈ VS(α)} (9)

where j = 1, 2, . . . , J . Now for inference one can implement either the profiled procedure in Kaido

et al. (2019) (KMS) or Bugni et al. (2017) (BCS). We discuss how the computational burden of

these procedures compares to our approach as computation is the main obstacle for a practical

inference in our model.25 For this discussion we employ similar notation as in Section 5 in the

paper, namely θ1 ≡ α, θ2 ≡ V , θ = (θ1, θ2).

C.1 KMS inference

Let Gbn,j be a standardised estimator of E0(1{a ∈ Aj}) evaluated on a bootstrap sample scaled by

√
n and let D̂n,j(θ) denote the gradient of L(Aj ;α, V ) w.r.t. α and V normalised by the sample

25To be clear, both KMS and BCS apply to a much wider range of problems than our approach. Thus we only
argue that for our specialised model the simulated critical value described in the paper may be preferable to KMS
and BCS from a practical perspective.
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standard deviation of moment j, σ̂n,j . Further, let ξ̂n,j(θ) denote (ιnσ̂n,j)
−1√n times the sample

estimator of moment j, where ιn →∞. The KMS critical value is obtained by bootstrapping:

Λbn(θ, ρ, c) = {λ ∈
√
n(Θ− θ) ∩ ρBd : Gbn,j + D̂n,j(θ)λ+ ψj(ξ̂n,j(θ)) ≤ c, j = 1, 2, . . . , J}

where ρBd imposes a technical “box” constraint on the local parameter space and ψj is a Generalised

Moment Selection function of Andrews & Soares (2010), and can be calculated as:

ĉ(θ) = inf{c ∈ R+ : P ∗(Λbn(θ, ρ, c) ∩ {λ1 = 0} 6= ∅) ≥ κ}

where P ∗ denotes the law induced by bootstrap sampling and λ1 is the first element of λ. Finally,

the marginal confidence set is built by finding lowest and highest value of θ1 for which the sample

moment inequalities are satisfied with slackness ĉ(θ1, θ2).

Let us now compare our inference method to KMS. Note that the computationally difficult step

in our model is the re-evaluation of the continuation value set Θ2(θ1) for different values of θ1,

which will be embedded in evaluating
√
n(Θ − θ) within Λbn(θ, ρ, c) in the KMS procedure. Our

procedure in Display 1 controls the number of evaluations of Θ2(θ1) by controlling the size of the

grid for candidate values of θ1 in the pre-estimation of the identified set in Step 1 and re-using

evaluations of the likelihood ratio from Step 1 in building the confidence set in the final Step 5.

Similarly, the first step in the KMS procedure in which candidate values of θ are drawn can be

adjusted to include only θ’s on the grid of values for θ1 to limit number of evaluations of Θ2(θ1).

However, as currently implemented, the KMS procedure proceeds with a smooth iterative algorithm

to generate further “good” candidate values of θ (“A-M steps”) and, thus, requires recalculation of

Θ2(θ1) for these newly generated values. As the number of iterations required for this algorithm

to converge may differ from application to application, it may be difficult to control the number

of evaluations of Θ2(θ1) in practice without significant changes to this algorithm. Therefore, it

seems that using the moment inequality characterisation in (9) and KMS is unlikely to dominate

our method in terms of computational convenience.
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C.2 BCS inference

The main BCS critical value is obtained by taking a minimum over two profiled bootstrap statistics,

TDRn (θ1) and TPRn (θ1), in order to improve power. As our inference procedure is conservative it

seems fair to compare it to TDRn (θ1) and TPRn (θ1) separately rather than to the more computation-

ally intensive minimum statistic.

Using the notation from the previous section BCS resampling statistics can be written as:

TDRn (θ1) = inf
θ2∈Θ̂2(θ1)

J∑
j=1

[
Gbn,j + ψj(ξ̂n,j(θ))

]
−

TPRn (θ1) = inf
θ2∈Θ2(θ1)

J∑
j=1

[
Gbn,j + ξ̂n,j(θ)

]
−

where Θ̂2(θ1) is the set of minimizers of the KMS test statistic (see their paper for details). Note

that similarly to our approach we can control the number of evaluations of Θ2(θ1) by imposing a

grid on θ1. However, note that resampling both TDRn (θ1) and TPRn (θ1) requires repeatedly solving a

non-linear non-convex constrained optimisation problem. Also, as argued in the main text, solution

to this problem will often be reached on the boundary of the set Θ̂2(θ1) and Θ2(θ1).26 This is much

more computationally expensive than repeatedly solving a convex optimisation problem in our

simulation procedure in Display 1.

D Additional Monte Carlo simulations

We perform limited number of simulations for δ = 0.95 due to slow convergence of optimization

algorithms for this case, which leads to extensive computing times. The results are given in Table

10.

26If we impose a condition equivalent of Assumption INF3, namely we have Θ̂2(θ1) = {θ∗2(θ1)} the DR statistic
seems computationally attractive compared to our approach. Still it requires evaluation of θ∗2(θ1) for all the candidate
values θ1 whereas we only need to calculate it for the endpoints of the pre-estimated marginal identified set, θ̂1 and

θ̂1.
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Table 10: MC simulations: coverage probabilities, δ = 0.95

Normal shocks

Simulated crit. val. χ2
3 crit. val.

90% 95% 99% 90% 95% 99%

Θ01 = [0.49, 5.06] 0.979 0.981 0.981 0.981 0.981 0.985
α = 0.1 0 0 0 0 0 0
α = 5.6 0.268 0.270 0.273 0.270 0.270 0.276

Θ01 = [0.49, 5.06] 0.92 0.971 0.98 0.971 0.973 0.996
α = 0.1 0 0 0 0 0 0
α = 5.6 0.131 0.132 0.135 0.133 0.135 0.135

Θ01 = [0.49, 5.06] 0.935 0.961 0.982 0.982 0.982 0.994
α = 0.1 0 0 0 0 0 0
α = 5.6 0.084 0.085 0.088 0.085 0.087 0.088

Θ01 = [0.49, 5.06] 0.942 0.97 0.989 0.971 0.985 0.994
α = 0.1 0 0 0 0 0 0
α = 5.6 0.076 0.077 0.079 0.077 0.077 0.079

Note: 500 Monte Carlo replications

E Inference without Assumption INF3

In this section we discuss how we can adjust our simulated critical value if θ∗(θ1) is not unique and

∂γ(θ0)/∂θ′2 contains zero rows for some θ0. This will happen, for example, if the true probabilities,

γ0, are flat on a set with non-empty interior.

Firstly, the main complication here comes from the fact that now the local parameter space

for γ at γ0 cannot be approximated simply by taking
{
∂γ(θ0)
∂θ′2

s : s ∈ K2(θ1), θ0 = (θ1, θ2) ∈ Θ0

}
(cf. proof of Theorem 1) as this set maps to zero when Θ0 is a compact set with non-empty

interior. However, given that γ is smooth around γ0 (see Assumption INF2(e)) a simple expansion

Θ0η = {θ ∈ Θ : infθ0∈Θ0 ‖θ−θ0‖ ≤ η} for η > 0 would allow us to bound the asymptotic distribution

of our profiled criterion as:

sup
θ1∈Θ01

LRT (θ1) ≤ max
θ1∈{θ1,θ1}

 inf
κ ∈

⋃
(θ1,θ2)∈Θ0η

{
∂γ(θ1,θ2)

∂θ′2
s:s∈Kθ2

2 (θ1)

} ‖VT − κ‖2

+ op(1)

= max
θ1∈{θ1,θ1}

{
inf

(θ1,θ2)∈Θ0η

inf
s∈Kθ2

2 (θ1)

∥∥∥∥VT − ∂γ(θ1, θ2)

∂θ′2
s

∥∥∥∥2
}

+ op(1)

where Kθ2
2 (θ1) is a cone approximating the local parameter space at θ2 ∈ θ∗2(θ1).

Now in order to approximate the statistic on the right-hand side above, we can replace θ1 and

θ1 with θ̂1 and θ̂1 as before. Next note that the identified set estimator in Chernozhukov et al.

(2007) approximates the identified set from “outside”, thus in practice we can replace Θ0η with
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their estimator Θ̂0 (note that we only have to estimate a “slice” out of Θ̂0 for θ̂1 and θ̂1). Finally,

note that now the (set of) closest corner(s) to θ2 ∈ θ∗2(θ1) depends on the value of θ2, C(θ1,θ2),

and Assumption INF5 is too strong in this setup. Thus, letting KLF (C) denote the orthant

corresponding to the corner C ∈ C(θ1,θ2) we can replace inf
s∈Kθ2

2 (θ1)

∥∥∥VT − ∂γ(θ1,θ2)
∂θ′2

s
∥∥∥2

above with

maxC∈C(θ1,θ2)
infs∈KLF (C)

∥∥∥VT − ∂γ(θ1,θ2)
∂θ′2

s
∥∥∥2

in order to simulate a conservative critical value.
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