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Abstract

In this note I show that the results in Graham et al. (2022) are linked to the well known

result in the U-statistics literature by Frees (1994). In fact, the asymptotic
√
N normality of

the kernel density estimator in Graham et al. (2022) follows from arguments in Frees (1994).

Graham et al. (2022) analyse nonparametric estimation of marginal density of:

Wij =W (Ai, Aj , Vij)

where {Ai}Ni=1 and {Vij}Ni,j=1 are i.i.d. and mutually independent and the function W is symmetric

in the first two arguments. Note that this implies that Wij ⊥Wkl unless at least one of the indices

in (i, j) and (k, l) coincide. They show that the kernel density estimator:

f̂W (w) =
2

N(N − 1)

∑
i<j

1

hN
K

(
w −Wij

hN

)

converges to a normal distribution at rate
√
N .

Frees (1994) analyses nonparametric estimation of marginal density of g(A1, A2, . . . , Am), where

{Ai}Ni=1 is an i.i.d. sequence and g is symmetric in all arguments1, and shows that the kernel density
1Giné & Mason (2007) extend his results to a uniform-in-bandwidth result.
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estimator:

f̂g(t) =

(
N

m

)−1 ∑
1≤i1<i2<...<im≤N

1

hN
K

(
t− g(Ai1 , Ai2 , . . . , Aim)

hN

)

converges to a normal distribution at rate
√
N .

To see the relationship between the two results, first assume that Vij is drawn from the same

distribution as Ai’s. As Vij ’s are independent of Ai’s, without loss of generality we can write

Wij ≡Wijk =W (Ai, Aj , Ak). Define the symmetrised version of Wijk as:

g(Ai, Aj , Ak) =W (Ai, Aj , Ak) +W (Ak, Ai, Aj) +W (Ai, Ak, Aj)

(note thatW is symmetric in the first two arguments). Now asymptotic
√
N normality of the kernel

density estimate of the density of g follows from the main theorem in Frees (1994). Note that, beyond

standard conditions on the kernel function, Frees (1994) requires the density of g(a,Aj , Ak), w1(t; a),

to exist and satisfy suptEA|w1(t;A)|2+δ < ∞, which is implied by smoothness conditions for W

and density of Vij imposed by Graham et al. (2022).

The previous discussion imposed some additional assumptions on the model in Graham et al.

(2022). Here I show that even without restricting the distribution of Vij (beyond assumptions

in Graham et al. (2022)) and without symmetrising the function W in the third argument, the

asymptotic
√
N normality of the kernel density estimator follows from arguments in Frees (1994)

as the shock V gets integrated out in this argument anyway. Below I show formally that the main

result in Frees (1994), Theorem A, holds for the setup in Graham et al. (2022). The remaining part

of the proof of normality deals with

W1N (a, t) = h−1
N E[K((t−W (a,A2, V12))/hn)]− h−1

N E [K ((t−W (A1, A2, V12))/hN )] ,

thus follows exactly from Frees (1994).2

2Note that the bandwidth condition Nh4
N → 0 in Graham et al. (2022) implies that the bias goes to 0, an

assumption in the main theorem of Frees (1994).
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Proposition 1. Define RN (t) = 2
N(N−1)

∑
1≤i1<i2≤N g̃(Ai1 , Ai2 , Vi1i2 ; t) where:

g̃(a1, a2, v12; t) =
1

hN
K

(
t−W (a1, a2, v12)

hN

)
− 1

hN
E

[
K

(
t−W (A1, A2, V12)

hN

)]
−W1N (a1, t)−W1N (a2, t)

Assume that K is a symmetric, bounded function that integrates to one and satisfies A5 in Graham

et al. (2022), w1(t; a) exists and satisfies suptEA|w1(t;A)|2+δ <∞ for δ > 0. Then:

RN (t) = Op(h
−1/2
N N−1).

Proof. Note that E[g̃(Ai1 , Ai2 , Vi1i2 ; t)|Ai1 ] = 0. We have:

V ar(RN (t)) =
4

N2(N − 1)2

∑
1≤i1<i2≤N

∑
1≤j1<j2≤N

E[g̃(Ai1 , Ai2 , Vi1i2 ; t)g̃(Aj1 , Aj2 , Vj1j2 ; t)]. (1)

When {i1, i2} and {j1, j2} have 0 or 1 element in common the expectation under the sum is zero.

Otherwise, E[g̃2(Ai1 , Ai2 , Vi1i2 ; t)] ≤ h−1
N E

[
K
(
t−W (A1,A2,V12)

hN

)2]
+ h−1

N E[W1N (A1, t)]
2 = O(h−1

N )

by a standard argument. Finally, since the number of non-zero elements in the sum in (1) is of

order O(N−2) we have:

V ar(RN (t)) = Op(h
−1
N N−2)

which is sufficient for the result.
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